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Electronic Appendix 1. – Species records collection and date information of records 

We collected Ambrosia artemisiifolia L. records for the countries studied in central Europe until (inclusively) 

2010 (see also Mang et al. (2018)). The records were gathered from many different sources. For Austria and 

Germany, we built an updated version of a pre-existing database (Essl et al. 2009, Richter et al. 2013). For the 

other countries, we searched the floristic literature, databases of the national floristic mapping projects, major 

herbaria and gathered unpublished records from colleagues. Such, a total of 11,856 records were collected. Since 

naturalization of this species had not occurred before the 20th century we did not consider earlier records, and 

this provided a total of 11,800 records for the modelling period 1900–2010 (see Table 1 in the main text). 

Most of the 11,800 records stem from recent years: only 134 records refer to years up to 1950, 252 up to 

1960, 512 up to 1970, and 990 up to 1980. There were 1,868 records up to 1990, 3,508 up to 2000, 4,788 up to 

2005, and finally, 11,800 up to 2010. These 11,800 records mapped to a total of 3,598 floristic mapping grid 

cells (see Fig. 1 in the main text). Most records (75%) could be unambiguously assigned to a single year. For the 

remaining 25% of the records, we only had information on the interval within which this species had been 

recorded. The general kind of temporal information used in this study was therefore interval-censored dates 

(with date intervals varying in length across records). Records were condensed to time of first detection in each 

grid cell by using the date of the earliest record for each cell; when this record referred to a date interval of two 

or more years, the information of all records from that particular cell was used to minimize the interval length. 

The hierarchical model accounted for the residual date uncertainty of interval-censored dates (see Electronic 

Appendix 2). In the simplified non-hierarchical model, for each record with an interval-censored date a year was 

randomly drawn from a uniform distribution on the record’s date interval to obtain a reference year. These 

reference years were also used (i) for date summaries of records (e.g. the chronology of the cumulative number 

of records stated above); and (ii) in model validation, for unique assignment of records either to the fitting data 

set or validation data set in the case that a date interval referred to years of both the fitting period and the 

validation period. 
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Electronic Appendix 2. – Hierarchical and non-hierarchical Bayesian models, generalized waiting-time 

distribution and likelihood function 

Hierarchical Bayesian model 

In the hierarchical model, the invasion process layer models the time of first invasion in each grid cell by the 

species, and the observation process layer models the time of first detection of the species’ occurrence in each 

invaded grid cell (Mang et al. 2017). The invasion process layer and the observation process layer are linked by a 

cell’s invasion time, which is the outcome of the invasion process and concurrently the start time of the 

observation process. Species records document the outcome of the observation process whereas the actual 

invasion times remain unknown. Moreover, for records with interval-censored dates the precise years of 

detection are also unknown. 

Bayesian inference approaches (Gelman et al. 2004) with data augmentation are particularly well suited for 

fitting models with a large number of unknown quantities. In our model, the actual invasion times of cells are 

quantities of interest and therefore regarded as additional parameters of the posterior distribution. By contrast, 

for interval-censored dates the precise years of first detection (within the date intervals specified by the records) 

are regarded as nuisance parameters and therefore integrated out. Let 𝒙 be the actual invasion times of all cells, 

𝒚 be the actual (precise) times of first detection in invaded cells, 𝒛 be the interval-censored dates of first 

detection in invaded cells stated by the records (i.e. the data), 𝜽 be all model parameters used in the invasion 

process, and 𝜹 be all model parameters used in the observation process; then the Bayesian posterior distribution 

of the hierarchical model is given by 

 
𝑝(𝜽, 𝜹, 𝒙 | 𝒛)  =  

∫ 𝑝(𝜽, 𝜹) 𝑝(𝒙 | 𝜽) 𝑝(𝒚 | 𝒙, 𝜹) 𝑝(𝒛 | 𝒚) d𝒚

𝑝(𝒛)
, (E2.1) 

where 𝑝(𝜽, 𝜹) is the (joint) prior distribution of 𝜽 and 𝜹, 𝑝(𝒙 | 𝜽) is the invasion process likelihood, 𝑝(𝒚 | 𝒙, 𝜹) is 

the observation process likelihood, 𝑝(𝒛 | 𝒚) is the detection interval likelihood, and 𝑝(𝒛) is the marginal 

distribution of 𝒛 (a normalizing constant). 

Non-hierarchical Bayesian model 

In the non-hierarchical model, it is assumed that the documented spread accurately reflects the actual spread of 

the species. In this model, observation and detection issues are thus ignored. Effectively, under these assumption 

𝒙, 𝒚 and 𝒛 from the hierarchical model are equivalent and, consequently, in the non-hierarchical model record 

dates are directly used as the cells’ invasion times and only the invasion process layer is used (as outlined in 

Electronic Appendix 1, in our study for each record with an interval-censored date a year was randomly drawn 

from a uniform distribution on the record’s date interval to obtain a reference year). Let 𝒙 be the invasion times 

of all cells that are, according to the model’s assumptions, accurately stated by the records (i.e. the data), and 

𝜽 be all model parameters used in the invasion process; then the Bayesian posterior distribution of the non-

hierarchical model is given by 

 
𝑝(𝜽 | 𝒙)  =  

𝑝(𝜽) 𝑝(𝒙 | 𝜽)

𝑝(𝒙)
, (E2.2) 

where 𝑝(𝜽) is the prior distribution of 𝜽, 𝑝(𝒙 | 𝜽) is the invasion process likelihood, and 𝑝(𝒙) is the marginal 

distribution of 𝒙 (a normalizing constant). The structure of the non-hierarchical model given by equation (E2.2) 

corresponds also to the structure of the models used in Mang et al. (2018). 

Generalized waiting-time distribution 

Invasion times and detection times can be equivalently expressed as waiting-times since model start time until 

invasion and since first invasion into a grid cell until first detection, respectively (Mang et al. 2017). The 

invasion risk function given by equation (2) in the main text and the detectability function given by equation (3) 

in the main text quantify the respective waiting-times by parameterizing the generalized waiting-time 

distribution (Arens et al. 2009). This distribution is central to survival analysis where objects become exposed to 

some hazard, and the random variable of interest is the residual time from initial hazard exposure until failure 

occurs. The magnitude of this hazard imposed at a given time is quantified by the hazard function (also called 
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hazard rate). In our model, grid cells are initially (at the model start time) unoccupied but exposed to an invasion 

risk; the invasion risk function is therefore the hazard function for a cell’s invasion time distribution. Where this 

invasion occurs, species occurrences in the respective cells are subsequently detectable; the detectability function 

is therefore the hazard function for a cell’s detection time distribution. 

Let 𝑊 be a general waiting-time random variable, 𝑏(𝑡) be its associated hazard function, and 𝑡0 be the start 

time of hazard exposure; then the cumulative distribution function (CDF) of a continuous random variable 𝑊 is 

given by 

 𝐹𝑊(𝑤;  𝑏(𝑡), 𝑡0)  =  P(𝑊 ≤ 𝑤;  𝑏(𝑡), 𝑡0)  =  1 − e
− ∫ 𝑏(𝑡)d𝑡

𝑤
𝑡0  (E2.3) 

(for 𝑤 ≥ 𝑡0). Conveniently, the hazard function 𝑏(𝑡) only needs to be ≥ 0, otherwise no constraints are imposed 

onto its shape. Specifically, at any time it can be increasing, decreasing, or constant. For 𝑏(𝑡) = 0 no hazard is 

imposed by definition and hence the event of interest cannot occur at time 𝑡. Higher values of 𝑏(𝑡) correspond to 

earlier expected failure time (i.e. in our model earlier invasion time or detection time). 

In survival analysis, the complementary cumulative distribution function (CCDF) is referred to as the 

survival function as it states the probability that an object could retain its original state until time 𝑤, and is given 

by 

 𝑆𝑊(𝑤;  𝑏(𝑡), 𝑡0)  =  P(𝑊 > 𝑤;  𝑏(𝑡), 𝑡0)  =  e
− ∫ 𝑏(𝑡)d𝑡

𝑤
𝑡0  (E2.4) 

(for 𝑤 ≥ 𝑡0). Evaluated for the model end time 𝑡e, that is 𝑤 = 𝑡e, the survival function hence states the probability 

that a cell remained unoccupied (invasion process) or the probability that an invaded cell remained undetected 

(observation process) during the modelling period. 

Equations (E2.3 & E2.4) use continuous time. In practice, however, invasion times and detection times may 

frequently be measured in discrete units (e.g. years, as in our study). Let 𝑡s𝑘
 and 𝑡e𝑘

 denote the start time and end 

time of the 𝑘-th discrete modelling sub-period (here a given year), respectively, then the probability mass 

function (PMF) of a discrete random variable 𝑊 is given by 

 
𝑓𝑊(𝑤𝑘;  𝑏(𝑡), 𝑡0)  =  P(𝑊 = 𝑤𝑘)  =  e

− ∫ 𝑏(𝑡)d𝑡
𝑡s𝑘

𝑡0 − e
− ∫ 𝑏(𝑡)d𝑡

𝑡e𝑘
𝑡0 . (E2.5) 

As equation (E2.5) uses exclusively the integral of 𝑏(𝑡), it makes no difference whether the hazard function is 

specified as a truly continuous function or as a step function stating an averaged value per sub-period. Using the 

step function approach can greatly facilitate the alignment with environmental data and/or facilitate the 

computing implementation, and so this was used in our study (i.e. the invasion risk function and detectability 

function changed values at annual intervals and thus effectively had a discrete resolution). 

For more statistical properties of the waiting-times until first invasion in grid cells and until first detection 

in invaded grid cells see also Mang et al. (2017) and Mang et al. (2018). 

Invasion process likelihood 

The invasion process likelihood considers the invasion times of all grid cells (Mang et al. 2017). Let 𝚿𝐦 be the 

set of cells which became invaded during the modelling period; then for each cell in 𝚿𝐦 the likelihood assesses 

the cell’s specific invasion time, 𝑥𝑖, by using the probability mass function given by equation (E2.5). Conversely, 

let 𝚿𝐞 be the complementary set of cells still unoccupied at the model end time; then for each cell in 𝚿𝐞 the 

likelihood assesses the probability that invasion has not occurred yet by using the survival function given by 

equation (E2.4). Let 𝑡s be the model start time, 𝑡e be the model end time, and let each cell’s invasion risk 

function, 𝑔𝑖(𝑡), be dependent on all invasion process parameters 𝜽 as given by equation (2) in the main text, then 

the invasion process likelihood is therefore: 

 𝑝(𝒙 | 𝜽)  =  ∏ 𝑓𝑋𝑖
(𝑥𝑖 ;  𝑔𝑖(𝑡), 𝑡s)

𝑖 ∈ 𝚿𝐦

 ×  ∏ 𝑆𝑋𝑖
(𝑡e;  𝑔𝑖(𝑡), 𝑡s)

𝑖 ∈ 𝚿𝐞

. (E2.6) 

Observation process likelihood 

The observation process likelihood considers the times of first detection of all cells which were invaded until the 

model end time (Mang et al. 2017). Let 𝚽𝐝 be the subset of these cells for which the species has also been 

recorded during the modelling period; then for each cell in 𝚽𝐝 the likelihood assesses the cell’s specific 
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detection time, 𝑦𝑖, by using the probability mass function given by equation (E2.5). Conversely, let 𝚽𝐮 be the 

complementary subset of cells which were invaded but for which no record is available by the model end time; 

then for each cell in 𝚽𝐮 the likelihood assesses the probability that detection has not occurred yet by using the 

survival function given by equation (E2.4). Let each invaded cell’s detectability function, ℎ𝑖(𝑡), be dependent on 

all observation process parameters 𝜹 as given by equation (3) in the main text, then the observation process 

likelihood is therefore: 

 𝑝(𝒚 | 𝒙, 𝜹)  =  ∏ 𝑓𝑌𝑖
(𝑦𝑖 ;  ℎ𝑖(𝑡), 𝑥𝑖)

𝑖 ∈ 𝚽𝐝

 ×  ∏ 𝑆𝑌𝑖
(𝑡e;  ℎ𝑖(𝑡), 𝑥𝑖)

𝑖 ∈ 𝚽𝐮

. (E2.7) 

Detection interval likelihood 

For all cells in which the species has been recorded during the modelling period, i.e. the cells in 𝚽𝐝, the 

detection interval likelihood considers the actual (precise) times of first detection within the respective date 

intervals. Let 𝒛 be the interval-censored dates of first detection in invaded cells stated by the records (i.e. the 

data), where for each cell the information of all records from that particular cell was used to minimize the 

interval length. In our model, the actual (precise) times of first detection within the respective date intervals were 

assessed using uniform distributions on each cell’s date interval (i.e. equal probability for each year), and the 

detection interval likelihood is therefore: 

 
𝑝(𝒛 | 𝒚)  =  ∏ {

1

𝑧b𝑖
 − 𝑧a𝑖

 + 1
       for  𝑦𝑖 ∈ [𝑧a𝑖

, 𝑧b𝑖
]

0       otherwise𝑖 ∈ 𝚽𝐝

, (E2.8) 

where 𝑧a𝑖
 and 𝑧b𝑖

 are the (inclusive) lower and upper endpoints (years), respectively, of the date interval of cell 𝑖. 

If both endpoints of a cell’s date interval refer to the same year then in the context of an annual modelling 

resolution for this cell a precise date of first detection is available. 
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Electronic Appendix 3. – GIS data sources and data processing 

Lattice system representing the study area 

The study area was represented by a lattice of grid cells of size 5′×3′ (~ 6×6 km
2
) corresponding to the Central 

European Floristic Mapping Project (Niklfeld 1998), comprising a total of 22,451 cells (see Fig. 1 in the main 

text; and see also Mang et al. (2018)). Terrestrial cell area was calculated by subtracting freshwater and marine 

area as documented by the Corine 2000 data set (Büttner et al. 2002) from total cell area. For edge cells, only the 

cells’ area within the countries studied was considered. 

Spatio-temporal variables 

Variables used to model the invasion process (mean temperature and total precipitation during the growing 

season; the proportion of cropland area and of urban area; and the length of motorway and railway networks) and 

the observation process (human population density in and around a grid cell; and intensified sampling for 

Ambrosia artemisiifolia in particular regions and years) were compiled on a spatio-temporal basis (per grid cell 

and year) from the following sources (see also Mang et al. (2017) and Mang et al. (2018)). 

Climate data 

Climate data were taken from the CRU TS 1.2 data set (Mitchell et al. 2004), providing a resolution of 10′, for 

the period 1901–1949 (for 1900 we used the mean from 1901–1920); and from the E-OBS 5.0 data set (Haylock 

et al. 2008), providing a resolution of 0.25°, for the period 1950–2010. Annual temperature and precipitation 

values were calculated by averaging and summing, respectively, the monthly values from the growing season 

April–October for each cell and year. 

Land use data 

Data on the proportion of cropland area and of urban area were taken from the History Database of the Global 

Environment (HYDE), Version 3.1 (Klein Goldewijk et al. 2010, Klein Goldewijk et al. 2011) and the Corine 

2000 data set (Büttner et al. 2002). HYDE data provide a spatial resolution of 5′ and a historical time series at 

decennial intervals. On the contrary, Corine data provide a much finer spatial resolution of 100 m with a 

minimum mapping area of 25 ha, but lack historical data for the 20th century. We therefore combined these two 

data sets by adding the per-cell anomaly between HYDE and Corine data for the year 2000 (this year was 

available in both data sets) to HYDE values. Cropland and urban area values for individual years (within the 

decennial intervals) were linearly interpolated. To obtain the proportion as an area-independent measure of 

environmental suitability for invasion, absolute cropland and urban area values were divided by total terrestrial 

area of the individual grid cell. 

Spatial motorway and railway vector data were taken from OpenStreetMap (OpenStreetMap contributors 

2011). For each cell we calculated the total length of motorway and railway networks. To create a time series, 

we used pooled historical trade data from the study area (Bolt & van Zanden 2014). For years not documented in 

these data the values were linearly interpolated, and the time series values were scaled such that a value of 1 

corresponded to the year 1900 (= first year of the modelling period). For motorways we overlaid the spatial data 

directly with this time series, whereas for railways we assumed that the network has remained, on average, 

constant. We acknowledge that this approach only approximates the historical development of motorway and 

railway networks; accuracy is however higher for the most recent decades when Ambrosia artemisiifolia was 

spreading most intensively. To obtain the proportion as an area-independent measure of environmental 

suitability for invasion, absolute motorway and railway length values were divided by the square-root (for 

dimensionality matching) of total terrestrial area of the individual grid cell. 

Intensified sampling for Ambrosia artemisiifolia 

Intensified sampling for Ambrosia artemisiifolia was classified as a spatio-temporal binary indicator variable 

(1 for intensified sampling, and 0 otherwise). For Austria, this classification was performed at the level of 

political districts, where intensified sampling occurred in the following districts since 1996: Braunau am Inn, 

Ried im Innkreis and Schärding; and in the following districts since 2005: Baden, Bregenz, Eisenstadt, 



6 

 

Eisenstadt-Umgebung, Gänserndorf, Graz, Graz-Umgebung, Hartberg-Fürstenfeld, Innsbruck, Innsbruck-Land, 

Korneuburg, Krems an der Donau, Krems-Land, Leibnitz, Linz, Linz-Land, Mödling, Neusiedl am See, 

Salzburg, Salzburg-Umgebung, Südoststeiermark, Wien, Wien-Umgebung, Wiener Neustadt and Wiener 

Neustadt-Land. For the other seven countries of the study area, the information was only available at the country 

level, where intensified sampling occurred in Hungary since 1995 and in Switzerland since 2005. 

Human population density 

Data on human population in and around a grid cell were also based on the History Database of the Global 

Environment (HYDE), Version 3.1 (Klein Goldewijk et al. 2010, Klein Goldewijk et al. 2011) with a spatial 

resolution of 5′ and a historical time series at decennial intervals. Human population numbers for individual 

years (within the decennial intervals) were linearly interpolated. To account for human mobility, we used a 

distance-weighted accumulation of human population numbers from grid cells within a country. We assumed 

that in one-dimensional space the frequency of human movement is inversely proportional to distance. This 

relationship was then projected into two-dimensional space (grid cells as areal units) analogously to the two-

dimensional kernel function for dispersal described in Electronic Appendix 4. As a result, weighting was 

proportional to the inverse of the squared distance between two cells. To obtain human population density, 

absolute human population numbers were divided by total terrestrial area of the individual grid cell. 

Scaling 

Climate, land use and human population raster data were matched to the resolution of the lattice system as 

follows. 

For climate data we used a statistical downscaling approach (e.g. Zimmermann et al. 2007, Randin et al. 

2009) against the WorldClim data set (http://www.worldclim.org) which provides long-term monthly mean 

values of temperature and precipitation for the period 1950–2000 at a fine-grained spatial resolution of 30″ 

(ca. 1×1 km
2
). In a first step, for both the 10′ CRU and the 0.25° E-OBS data set we calculated long-term 

monthly mean values of temperature and precipitation for the 1950–2000 reference period of the WorldClim data 

set (the original CRU data are actually until 2000). Next, for every year we calculated monthly temperature and 

precipitation anomalies from these long-term monthly mean values, using absolute differences for temperature 

and relative differences for precipitation. These anomalies were then interpolated to the 30″ resolution of the 

WorldClim data set using a two-dimensional minimum curvature spline technique as implemented in ESRI® 

ArcGIS 10.1 (Esri 2012), and added to (temperature) or multiplied with (precipitation) the 30″ WorldClim 

values. Finally, we overlaid the downscaled 30″ climate data with the 5′×3′ raster layer of our lattice system and 

averaged the downscaled data for every 5′×3′ grid cell and month. 

For HYDE data, we first transformed the 5′×5′ data resolution to a 1′×1′ resolution (dividing values of 

cropland area, urban area and human population numbers by 25), and subsequently re-accumulated at the 5′×3′ 

resolution of our lattice system. 

GIS operations were conducted using ESRI® ArcGIS 10.1 (Esri 2012). 

Acknowledgments due to data licenses 

We acknowledge the E-OBS dataset from the EU-FP6 project ENSEMBLES (http://ensembles-

eu.metoffice.com) and the data providers in the ECA&D project (http://www.ecad.eu). 
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Electronic Appendix 4. – Dispersal in two-dimensional space 

Dispersal from invaded source cells to unoccupied recipient cells was modelled as isotropic dispersal in two-

dimensional space dependent on the geographical distance between grid cells (see also Mang et al. (2017) and 

Mang et al. (2018)). To derive the kernel function for dispersal, we started with a leptokurtic, one-dimensional 

kernel function from the power-law family of form 

 𝑓1D(𝑑𝑖,𝑗)  =  𝑑𝑖,𝑗
−𝛼

 (E4.1) 

as a base, where 𝑑𝑖,𝑗 is the distance between the centroids of cells 𝑖 and 𝑗, and 𝛼 is a shape parameter (Portnoy & 

Willson 1993). Distances were calculated using the R (R Development Core Team 2011) function geoDist from 

package ‘SoDA’ (Chambers 2008) and measured in kilometres, at a precision of one decimal place. To match the 

dimensionality of the lattice system (dispersal to recipient cells as areal units), this base function was then 

projected into two-dimensional space and normalized to give 

 

𝑓2D(𝑑𝑖,𝑗)  = ∫ 𝑓1D(𝑥)d𝑥

𝑑𝑖,𝑗 + 𝑚

𝑑𝑖,𝑗 − 𝑚

 
1

𝑐
 

𝑚

4 𝑑𝑖,𝑗

, (E4.2) 

where 𝑚 is the average cell radius under a circular cell shape approximation (keeping cell area constant), and 𝑐 is 

an (approximate) normalizing constant given by 𝑐 =  ∫ 𝑓1D(𝑥)d𝑥
𝑑max

𝑑min
 with finite lower and upper dispersal 

bounds 𝑑min and 𝑑max, respectively. Due to computing constraints, dispersal was restricted to cell-pairs with 

𝑑𝑖,𝑗 ≤ 150 km. For the normalization we hence used 𝑑min = 𝑚 and 𝑑max = 𝑚 + 150. 
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Electronic Appendix 5. – Prior distributions and Markov chain Monte Carlo (MCMC) 

Table E5.1. – Marginal prior distributions of invasion process parameters, 𝜽, and observation process parameters, 𝜹, and 

transformations used for Markov chain Monte Carlo (MCMC) sampling of these parameters. Prior distributions refer to the 

untransformed parameter scale and are assumed to be independent, hence the joint prior distributions of the hierarchical 

model and non-hierarchical model, 𝑝(𝜽, 𝜹) and 𝑝(𝜽), respectively, are given by their product. For normally-distributed prior 

distributions the provided parameterizations state the mean and standard deviation, and for Gamma-distributed prior 

distributions the shape and scale. 

Parameter Prior distribution Transformation 

Invasion process:   

Environmental suitability   

𝛽temperature N(0, 5) identity 

𝛽precipitation N(0, 5) identity 

𝛽cropland area N(0, 5) identity 

𝛽urban area N(0, 5) identity 

𝛽motorways N(0, 5) identity 

𝛽railways N(0, 5) identity 

Dispersal, 𝛼 Gamma(1.5, 100) log 

Source cells propagule production rate, 𝜂 Gamma(1.5, 100) log 

Background introduction rate, 𝜆 Gamma(1.5, 100) log 

Background introduction start boost, 𝜆b Gamma(1.5, 100) log 

Observation process:   

Detection rate, 𝛾 Gamma(1.5, 100) log 

Detection dependence on invasion level, 𝜑 Gamma(1.5, 100) log 

Sampling intensity   

𝜌human population density N(0, 5) identity 

𝜌pre-1970 N(0, 5) identity 

𝜌intensified sampling in Austria, Hungary & Switzerland N(0, 5) identity 

𝜌Germany N(0, 5) identity 

𝜌Czech Republic, Slovakia & Slovenia N(0, 5) identity 

 

For model fitting we used a Bayesian inference approach with Markov chain Monte Carlo (MCMC) (Gelman et 

al. 2004, Brooks et al. 2011) for parameter estimation (see also Mang et al. (2017) and Mang et al. (2018)). 

MCMC is a family of numerical methods that derives a sample of the posterior distribution by evolving a 

Markov chain. We used a Metropolis-Hastings sampling scheme in which a new parameter state is proposed 

based on the current parameter state, and subsequently either accepted (replacing the current parameter state) or 

rejected (retaining the current parameter state). In general notation, let 𝜻𝑐 be the current parameter state and 𝜻∗ be 

the proposed state, then the acceptance probability is: 

 
𝐴(𝜻𝑐 → 𝜻∗)  =  min (1,

𝑝(𝜻∗ | 𝝍) 𝑞(𝜻𝑐  | 𝜻∗)

𝑝(𝜻𝑐  | 𝝍) 𝑞(𝜻∗ | 𝜻𝑐)
), (E5.1) 

where 𝑝(𝜻∗ | 𝝍) and 𝑝(𝜻𝑐 | 𝝍) are the posterior densities under the proposed parameter state and current 

parameter state, respectively (each proportional to an unknown normalizing constant which cancels out in their 

ratio), 𝑞(𝜻∗ | 𝜻𝑐) is the proposal density for the proposed parameter state given the current parameter state, and 

𝑞(𝜻𝑐 | 𝜻∗) is the proposal density for the current parameter state given the proposed parameter state. Acceptance 

occurs unconditionally if the ratio on the right-hand side is ≥ 1, and otherwise if it is greater than a drawn 

U(0,1) random variate (a uniform random variate). The Markov chain is evolved by repeating this process 

iteratively many times (MCMC iterations). Efficient proposal schemes have intermediate acceptance rates. For 

normally distributed proposal and posterior distributions it can be shown that an acceptance rate of 

approximately 44% is optimal for scalar parameter updates and 23.4% for multivariate updates of more than five 
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parameters, but sampling still remains efficient unless acceptance rates deviate considerably from these figures 

(Gelman et al. 2004, Brooks et al. 2011). The Metropolis-Hastings sampling scheme used in this study builds on 

the sampling scheme used in Mang et al. (2017) and was implemented as follows. 

For sampling invasion process parameters, 𝜽, and observation process parameters, 𝜹, parameters were 

transformed to the real line (see Table E5.1 for transformation functions) and the posterior density was 

transformed via the applicable Jacobian term. Each parameter was updated as scalar, with the proposed value 

given by drawing from a (univariate) normal distribution centred at the current parameter value and the standard 

deviation chosen empirically to yield the desirable intermediate acceptance rate. 

In the hierarchical model, the actual invasion times of grid cells, 𝒙, are regarded as additional parameters of 

the posterior distribution; by contrast, for interval-censored dates the actual (precise) times of first detection in 

invaded cells, 𝒚, are merely regarded as nuisance parameters. Consequently, both 𝒙 and 𝒚 were sampled during 

MCMC but values were stored permanently only for 𝒙. In the following descriptions of sampling 𝒙 and 𝒚, the 

model end time, 𝑡e, refers to the last year used for MCMC fitting (2010; or, for models fitted for model 

validation, 2005) and only records up to 𝑡e were considered. For sampling 𝒙, each cell’s invasion time was 

updated as scalar with the new time proposed as follows to yield good chain mixing: candidate years for 

proposal were all years up to 50 less than and greater than the current value (= year) of 𝑥𝑖 subject to the 

constraints that (i) the current year 𝑥𝑖 was not a candidate; (ii) no year before the model start time (= 1900) was 

proposed; (iii) for cells with a record available by 𝑡e no year after the current value (= year) of 𝑦𝑖 was proposed; 

(iv) for cells without such a record available any year greater than 𝑡e was implicitly considered as the 

‘unoccupied at the model end time’ state; and (v) if the current value of 𝑥𝑖 represented this ‘unoccupied at the 

model end time’ state then only years less or equal than 𝑡e were candidates. From all candidate years a new 

invasion time was then proposed by drawing from a uniform distribution. For sampling 𝒚, updating was only 

necessary for cells for which the respective date intervals had a length of two or more years (i.e. cells with 

residual uncertainty regarding the year of first detection). For each of these cells, the actual (precise) time of first 

detection was updated as scalar with the new time proposed as follows to yield good chain mixing: candidate 

years for proposal were all years up to 50 less than and greater than the current value (= year) of 𝑦𝑖 subject to the 

constraints that (i) the current year 𝑦𝑖 was not a candidate; (ii) no year outside the cell’s date interval, [𝑧a𝑖
, 𝑧b𝑖

], 

was proposed; and (iii) no year before the current value (= year) of 𝑥𝑖 was proposed. From all candidate years a 

new actual (precise) time of first detection was then proposed by drawing from a uniform distribution. 

For fitting the hierarchical model, all invasion process parameters, observation process parameters and 

parameters of cells’ actual invasion times and actual (precise) times of first detection were updated once per 

iteration, with the update order newly randomized with each iteration. The non-hierarchical model used only the 

invasion process parameters and sampling of these parameters followed the same scheme as was described for 

the hierarchical model. 
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Electronic Appendix 6. – Parameter estimates for models with different representations of the variation in 

climate over time 

Table E6.1. – Parameter estimates of the invasion process and observation process for modelling the spread of Ambrosia 

artemisiifolia in central Europe. In the hierarchical model, the observation process accounts for lagged and incomplete 

records of occurrence. The non-hierarchical model assumes that records accurately reflect the species’ actual spread and 

hence does not use the observation process. Models in (A) use a linear trend in climate warming to represent the variation in 

climate over time, and models in (B) use the long-term climate average; models using an annual time series of temperature 

and precipitation values are presented in Table 2 in the main text. Estimates are stated as median (top row) and 95% (central) 

credible interval (bottom row) of the marginal posterior distributions. Significance tests apply only to parameters of 

environmental suitability and sampling intensity, with significant results marked by *. 

A – Linear trend in climate warming 

Parameter Hierarchical model Non-hierarchical model 

Invasion process:  

 

 

 

Environmental suitability  

 

 

 

𝛽temperature 0.55* 

(0.49, 0.61) 

0.83* 

(0.79, 0.87) 

𝛽precipitation 0.36* 

(0.32, 0.40) 

0.20* 

(0.17, 0.22) 

𝛽cropland area 0.01 

(−0.03, 0.05) 

−0.02 

(−0.06, 0.03) 

𝛽urban area 0.11* 

(0.07, 0.14) 

0.11* 

(0.08, 0.15) 

𝛽motorways 0.01 

(−0.01, 0.04) 

0.03* 

(0.01, 0.05) 

𝛽railways 0.10* 

(0.07, 0.13) 

0.10* 

(0.07, 0.14) 

Dispersal, 𝛼 1.78 

(1.66, 1.91) 

1.04 

(0.97, 1.10) 

Source cells propagule production rate, 𝜂 0.022 

(0.019, 0.025) 

0.018 

(0.016, 0.019) 

Background introduction rate, 𝜆 0.00017 

(0.00011, 0.00023) 

0.00010 

(0.00009, 0.00012) 

Background introduction start boost, 𝜆b 0.0060 

(0.0035, 0.0096) 

0.000086 

(0.000009, 0.000285) 

Observation process:  

 

 

 

Detection rate, 𝛾 0.0070 

(0.0060, 0.0082) 

 

Detection dependence on invasion level, 𝜑 0.54 

(0.39, 0.69) 

 

Sampling intensity  

 

 

 

𝜌human population density 0.48* 

(0.39, 0.58) 

 

𝜌pre-1970 −0.74* 

(−0.96, −0.53) 

 

𝜌intensified sampling in Austria, Hungary & Switzerland 4.14* 

(3.91, 4.39) 

 

𝜌Germany 0.41* 

(0.07, 0.77) 

 

𝜌Czech Republic, Slovakia & Slovenia 0.76* 

(0.52, 0.98) 
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B – Long-term climate average 

Parameter Hierarchical model Non-hierarchical model 

Invasion process:  

 

 

 

Environmental suitability  

 

 

 

𝛽temperature 0.54* 

(0.48, 0.60) 

0.82* 

(0.78, 0.86) 

𝛽precipitation 0.27* 

(0.23, 0.31) 

0.23* 

(0.21, 0.26) 

𝛽cropland area 0.00 

(−0.04, 0.04) 

0.03 

(−0.02, 0.07) 

𝛽urban area 0.11* 

(0.07, 0.15) 

0.16* 

(0.12, 0.19) 

𝛽motorways 0.03 

(−0.00, 0.05) 

0.02 

(−0.00, 0.05) 

𝛽railways 0.09* 

(0.06, 0.13) 

0.08* 

(0.05, 0.11) 

Dispersal, 𝛼 1.75 

(1.63, 1.88) 

0.93 

(0.85, 0.99) 

Source cells propagule production rate, 𝜂 0.026 

(0.022, 0.030) 

0.023 

(0.021, 0.025) 

Background introduction rate, 𝜆 0.00015 

(0.00010, 0.00021) 

0.000076 

(0.000062, 0.000092) 

Background introduction start boost, 𝜆b 0.0033 

(0.0015, 0.0056) 

0.000076 

(0.000009, 0.000248) 

Observation process:  

 

 

 

Detection rate, 𝛾 0.0082 

(0.0071, 0.0097) 

 

Detection dependence on invasion level, 𝜑 0.19 

(0.04, 0.35) 

 

Sampling intensity  

 

 

 

𝜌human population density 0.49* 

(0.38, 0.59) 

 

𝜌pre-1970 −0.62* 

(−0.84, −0.38) 

 

𝜌intensified sampling in Austria, Hungary & Switzerland 4.02* 

(3.83, 4.21) 

 

𝜌Germany 0.13 

(−0.25, 0.54) 

 

𝜌Czech Republic, Slovakia & Slovenia 0.95* 

(0.70, 1.21) 
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Electronic Appendix 7. – Kernel function for dispersal according to the non-hierarchical model 

 

 

Fig. E7.1. – The kernel function for dispersal from invaded source cells to unoccupied recipient cells in a two-dimensional 

lattice system according to the non-hierarchical model of the spread of Ambrosia artemisiifolia in central Europe. The dashed 

line shows the function for the median of the marginal posterior distribution of the shape parameter 𝛼 (see Table 2 in the 

main text). The curve is very similar for the 95% credible interval of 𝛼, which is shown as the shaded area in the background 

of the dashed line. 
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