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Abstract: Hybridization between native and alien congeners may pose a serious threat to
biodiversity and negatively affect native flora. Here we study Solidago xniederederi, which
originated and became established in Europe as a result of a cross between the alien
S. canadensis and native S. virgaurea. The recent increase in the number of records of
S. xniederederi in Europe has highlighted the need to monitor its occurrence, spread and behav-
iour. In the present study, we tested the effectiveness of flow cytometry for detecting hybrid
plants of S. xniederederi. Sequences of the ITS region of ntDNA and the rpS15-ycfI spacer of
cpDNA were used to confirm the hybrid origin of analysed plants and to identify the maternal
species. Our study included 60 single-species populations of S. canadensis, S. gigantea and
S. virgaurea, and 16 mixed populations with the presence of hybrid S. xniederederi sampled
from six countries in central Europe and adjacent areas. All individuals of S. canadensis,
S. xniederederi and S. virgaurea investigated were diploid (2n~2x~18) but differed in their rel-
ative DNA content values. The DNA content of S. xniederederi was intermediate between
S. canadensis and S. virgaurea with no overlaps, with the differences between the species being
statistically significant. Therefore, we conclude that flow cytometry is a reliable and efficient
method for detailed screening for hybrids within mixed Solidago populations and for identify-
ing non-flowering or morphologically ambiguous Solidago plants. Since both parental species
varied only negligibly in their DNA content, it may also be applicable across a broader geo-
graphic scale. Genetic, flow cytometric and distributional data suggest that the hybrids are to
a large extent early generation (likely F1) hybrids as very few cases of supposed introgressants
were also inferred. The results from chloroplast rpS15-ycfI spacer showed that hybridization
has occurred in both directions.
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Introduction

Hybridization, resulting from mating between individuals of different species or geneti-
cally divergent individuals within a species, is one of the most important processes in
plant evolution and speciation, influencing the evolutionary course of at least 25% of
plant species (Mallet 2005, Whitney et al. 2010, Abbott et al. 2013). Besides natural phe-
nomena bringing previously isolated species/lineages into contact (e.g. range shifts due
to climate oscillations; Aratjo & Luoto 2007), human-induced secondary contacts have
become the most influential in this regard since the Age of Discovery (15th century).
Related yet different species can meet when crops (Ellstrand et al. 2013) and ornamental
(e.g. Lehan et al. 2013, Pergl et al. 2016) plants are purposefully introduced; however,
unintentional introductions accompanying human movement between countries are also
very common (e.g. Lehan et al. 2013).

Hybridization of native and non-native congeners deserves special consideration; evi-
dence of such cases has increased exponentially over the last few decades (Mooney &
Cleland 2001, Largiader 2008). Hybridization can have diverse outcomes including seri-
ous conservation concerns (Rhymer & Simberloff 1996, Vila et al. 2000). (i) One of the
outcomes may be the establishment of a new (hybridogenous) species that can either
remain at its place of origin (Abbott 1992), or, become invasive and adversely affect
whole ecosystems and communities [e.g. Sporobolus anglicus (C. E. Hubb.) P. M. Peter-
son & Saarela — CABI 2021a], and, in extreme cases, spread so successfully that it com-
pletely displaces its parental species (Hegde et al. 2006). (ii) Gene flow between parental
taxa causes ecological and genetic changes in both the introduced and native species
(Strauss et al. 2006). Introgression of genes from a native species provides exotic species
with preadapted genes for new environments that may enhance its invasiveness (Ellstrand
& Schierenbeck 2000). On the other hand, gene flow in the opposite direction may cause
erosion of the genetic pool, loss of genetic variability and thus negatively affect locally
adapted populations of a native species (especially pronounced in small populations/rare
species but even large native populations over the long term; Vila et al. 2000, Wolf et al.
2001). This may in some cases lead to extinction via hybridization (Todesco et al. 2016,
Vallejo-Marin & Hiscock 2016). (iii) In many cases, hybridization may be simply rare
with little (Iong-term) effect on either parental taxon (e.g. Vallejo-Marin & Hiscock
2016, Dormontt et al. 2017).

Considering the above-mentioned threats, preventing the spread of new hybrid lin-
eages requires quick recognition and consequently a rapid management response.
Hybrids are often identified in the field based on their intermediate morphology and con-
firmed by genetic markers or a combination of both (Abbott et al. 2010, Saltonstall et al.
2014, Zayaetal. 2015, Fukatsu et al. 2019). Hybrid origin is also frequently accompanied
by decreased fertility or even complete sterility as a result of reproductive isolating barri-
ers (Baack et al. 2015). As hybridization and establishment of a hybrid lineage is often
connected to genome duplication (allopolyploidization, e.g. Ainouche et al. 2004,
Mandédkova et al. 2019), or hybrids arise between congeners of different ploidies
(heteroploid hybridization, e.g. Zozomova-Lihova et al. 2014, Musial et al. 2020),
karyological analysis (chromosome counts and/or nuclear DNA content) is another way
of identifing hybrids. Although recognition of hybrids at the homoploid level is trickier
and requires high quality of analyses (Loureiro et al. 2010), the effectivity of flow
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cytometry (FCM) for detection of homoploid hybrids in natural populations has been
repeatedly proven for systems in which genome sizes of the two progenitors differ signif-
icantly (e.g. by at least 7%; see Loureiro et al. 2010, HanuSova et al. 2014, Mackové et al.
2017, 2018, Agudo et al. 2019). However, the expected intermediate genome size in
early-generation hybrids can be disrupted by several evolutionary processes such as
genome rearrangements of stabilized hybrids, natural selection of hybrids, or intro-
gression resulting in a continuous variation in genome size linking the distinct values of
parental taxa, which often complicate the detection of homoploid hybrids by flow cyto-
metry (cf. Bures et al. 2004, Loureiro et al. 2010, HanuSova et al. 2014, Pellicer et al. 2021).

Currently, two alien species of the genus Solidago L., S. canadensis L. and S. gigantea
Aiton, both of North American origin, are naturalized and invasive in almost all of
Europe (Kabuce & Priede 2010, Kowarik 2010, CABI 2021b, ¢). Here, they share habi-
tats with the European native S. virgaurea L., which has led to the origin of two spontane-
ous hybrids: S. xniederederi Khek and S. xsnarskisii GudZinskas & Zalneravitius. The
latter, Solidago xsnarskisii (2n = 3x = 27), the result of the heteroploid crossing between
diploid S. virgaurea (2n = 2x = 18) and tetraploid S. gigantea (2n = 4x = 36), the fertility
of which is low and is currently only known from several localities in northern and east-
ern Europe (Gudzinskas & Zalneravicius 2016, Pliszko 2018, Musiat et al. 2020,
Vinogradova & Galkina 2020). In contrast, the number of records of S. xniederederi
(2n =2x = 18), which originated from the homoploid hybridization of diploid S. canaden-
sis and S. virgaurea (both 2n = 2x = 18), has rapidly increased, mainly over the last four
decades (Musiat et al. 2020, Skokanova et al. 2020b). Solidago xniederederi was noticed
for the first time at the end of the 19th century (Skokanova et al. 2020a) and was recently
reported from more than 400 localities in 17 European countries (Skokanové et al.
2020b). Solidago xniederederi seemingly originated through multiple events of hybrid-
ization mainly at localities where both parental species grow in close proximity with one
another (Pliszko & Zalewska-Gatosz 2016, Galkina & Vinogradova 2019). Further
spreading of these hybrids and formation of their own coherent populations cannot be
excluded in the near future because plants of S. xniederederi produce viable pollen
(< 70%; Migdalek et al. 2014, Karpavic¢iené¢ & Radusiené 2016). A low percentage of
well-developed fruits (6%; Migdatek et al. 2014, Pliszko & Kostrakiewicz-Gieratt 2017)
is partially balanced by high seed germinability (91%; Pliszko & Kostrakiewicz-Gieratt
2017). Solidago xniederederi has the potential to successfully combine the astonishing
phenotypic plasticity of S. virgaurea (Turesson 1925, Takahashi & Matsuki 2016, Hirano
etal. 2017, Nardi et al. 2018) with the high invasiveness of S. canadensis (CABI 2021Db).
Assuming that the hybrids and introgressed progeny may benefit from a broader range of
environmental conditions than their parental taxa (cf. Bleeker et al. 2007, Currat et al.
2008, Abbott et al. 2013), S. xniederederi may soon pose a serious threat to biodiversity
at the species and habitat level. Therefore, monitoring the occurrence and spread of
S. xniederederi is an important precaution if its potential negative effect on native Euro-
pean ecosystems is to be mitigated.

Starting from previous reports on genome size differences between S. canadensis and
S. virgaurea (Szymura et al. 2015, Fernandez et al. 2018 and references therein) and on
determination of the hybrid origin of S. Xniederederi using the internal transcribed
spacer region (ITS) of nuclear ribosomal DNA (nrDNA) or non-coding regions of
chloroplast DNA (cpDNA; Pliszko & Zalewska-Galosz 2016, Galkina & Vinogradova
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2019), the main goals of the present study are: (i) test whether the hybrid plants of
S. xniederederi have intermediate values of the relative DNA content of their parental spe-
cies, and consequently, if FCM could be unequivocally used for hybrid detection; (ii) test
if the Solidago species co-occuring with S. xniederederi, i.e. S. canadensis, S. gigantea
and S. virgaurea, differ significantly in their relative DNA contents without any overlaps
even when more extensive sampling over large areas is taken into account; (iii) verify the
hybrid origin of the S. xniederederi plants using the ITS region of nrDNA and, in addi-
tion, determine whether there is any evidence of backcrossing or later-generation hybrids
in the ITS variation patterns; (iv) identify non-coding regions in cpDNA that are highly
polymorphic and could differentiate between the parental species and hence reveal the
direction of hybridization. To study the differentiation of genome size in the Solidago taxa
studied, we employed DAPI flow cytometry, which is accurate and particularly useful for
detecting small differences in genome size (Marhold et al. 2010, Suda et al. 2010). Chro-
mosome counting was used for S. xniederederi and its parental species to verify the flow
cytometry data.

Material and methods
Studied taxa

Solidago canadensis occurs naturally in the north-eastern part of the United States and
southern regions of Canada. Its secondary occurrence is known from Asia, Australia,
Europe, and New Zealand (Semple 2021). This species was introduced to England as
early as 1645 (Kowarik 2010), afterwards, it spread as it is an attractive ornamental plant
to botanical as well as common gardens and nurseries throughout Europe. In Europe, it
was recorded in the wild for the first time in 1850, and an exponential increase in the
number of its sites started in 1870—1900 (Weber 1998). Today, this species is naturalized
and invasive from northern Italy to southern Scandinavia (Kabuce & Priede 2010).
Solidago canadensis is exclusively diploid (2n = 2x = 18). In its native area, two varieties,
S. canadensis var. canadensis and S. canadensis var. hargeri Fernald, differing mainly in
the type of stem indumentum, are recognized (Melville & Morton 1982, Semple & Cook
2006). The infraspecific classification of European invasive populations of S. canadensis
is still uncertain (Verloove et al. 2017).

Solidago virgaurea is a highly polymorphic complex widespread in temperate and
cold climates in Europe and Asia and has a patchy distribution also in the Mediterranean
region of southern Europe, the north-western part of Africa and Asia Minor. This com-
plex comprises 14-24 exclusively diploid (2n = 2x = 18) subspecies and microspecies. In
Europe, the following subspecies are recognized within S. virgaurea: S. virgaurea subsp.
virgaurea widely distributed in Europe; S. virgaurea subsp. minuta (L.) Arcang. with
a patchy distribution in European mountains; S. virgaurea subsp. pineticola Sennikov
from the Baltic region; S. virgaurea subsp. lapponica (With.) Tzvelev from northern
Europe; S. virgaurea subsp. litoralis (Savi) Briquet et Cavillier; S. virgaurea subsp.
macrorrhiza (Lange) Nyman and S. virgaurea subsp. rupicola (Rouy) Lambinon from
sandy coasts of France and Italy (Yuzepchuk 1959, Slavik 2004, Greuter 20062020,
Nardi et al. 2018, Semple 2021, Tela Botanica 2021).
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Solidago xniederederi is a nothotaxon resulting from the homoploid crossing (at the
diploid ploidy level) of alien S. canadensis and native S. virgaurea (Musiat et al. 2020). It is
characterized by having a morphology that is intermediate between that of its parental spe-
cies (Fig. 1B), especially in respect to the height of the plant and size of the inflorescence
and capitulum (Karpaviciené & RaduSiené 2016). In addition, plants of S. xniederederi
are conspicuous in the frequent presence of vegetative shoots with densely crowded
leaves (in the form of a pseudorosette) at the apex (GudZinskas & Zalneravitius 2016).
The hybrid occurs mainly at sites inhabited by both parental species and only sporadically
at sites inhabited by one parental species. The known occurrences of S. xniederederi are
restricted to a part of Europe between 45.8 and 63.8°N (Skokanova et al. 2020b). Here S.
niederederi is classified as an established alien (Musiatl et al. 2020).

The native range of Solidago gigantea is in southern Canada and the central and east-
ern part of the USA. Nowadays this species is naturalized and invasive in Europe, East
Asia, the Azores and New Zealand. In Europe, S. gigantea was introduced in 1758 and
afterwards distributed as an ornamental to gardens and nurseries (Weber & Jacobs 2005).
The first observations of S. gigantea in the wild in Europe date back to 1850 (Weber
1998). Since then the number of its localities have exponentially increased and it has
spread across almost the whole of Europe (except the north). In its native range, two vari-
eties, var. gigantea and var. shinnersii Beaudry, both including diploid, tetraploid and
hexaploid ploidy levels (only rarely triploid and pentaploid) are reported (Semple 2021).
Its invasive populations in Europe belong to var. gigantea and are predominantly
tetraploid (Schlaepfer et al. 2008a, Semple 2021). Solidago gigantea often co-occur with
S. canadensis, S. xniederederi and/or S. virgaurea.

The species studied are long-lived perennials, 0.3-2.5 m tall with 1-40 flowering
shoots, capitula are relatively small but numerous (20-2000) (Slavik 2004, Skokanova
2022). All species are obligate outbreeders and are pollinated by a wide range of insects.
Plants produce up to 27,700 fruits of small size. Fruits have a pappus and are easily dis-
persed by wind over long distances. Non-native S. canadensis and S. gigantea also repro-
duce asexually via underground rhizomes (Werner 1980, Huang et al. 2007, Moravcova
et al. 2010, CABI 2021b, ¢).

Sampling

The sampling was primarily focused on mixed populations of S. canadensis and S. virgaurea
with the presence of hybrid S. xniederederi. Altogether, material from 248 plants origi-
nating from 16 mixed populations from Poland, Slovakia, Hungary, and Romania were
collected (Fig. 1A, Table 1). The occurrence of S. xniederederi in populations BST, JEL,
NSB, BTL, VPA and RZC (Table 1) is reported here for the first time; the remaining
localities of S. xniederederi were reported previously (Pliszko et al. 2018, Skokanové et
al. 2020b). In cases when S. gigantea was present at a site with a mixed population, we
also collected plant material of this taxon.

Additional material from 246 plants originating from single-species populations of
S. canadensis, S. gigantea and S. virgaurea (20 populations per taxon) from a broader
area (Czechia, Slovakia, Hungary, Croatia and Romania; Fig. 1A, Table 1) was collected
and analysed to clarify whether the origin of plant material could affect the results due to
geographically conditioned variations in genome size.
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Fig. 1. (A) Map of the sites of the Solidago taxa analysed. Mixed populations with the hybrid S. xniederederi
are labelled with population codes (see Table 1). Populations marked by asterisk(s) included a supposed
introgressant Ic (*) or Iy (**) of S. canadensis and S. xniederederi (see Results for more details). (B) Solidago
canadensis, S. xniederederi and S. virgaurea from the Abatjvar locality (Hungary). Photograph: K. Skokanova.

The flowering plants were determined in the field using known diagnostic morpholog-
ical characters (Slavik 2004, Skokanova 2022). For identification of S. xniederederi we
also used morphological characters identified by GudZinskas & Zalneravi¢ius (2016),
Karpaviciené & Radusiené (2016) and Galkina & Vinogradova (2019). From four locali-
ties with mixed populations (JAN, JEL, MYD, NEZ), nine plants in the vegetative stage,
suspected to be of hybrid origin due to the presence of vegetative shoots with densely
crowded leaves at the apex typical of S. xniederederi (cf. GudZinskas & Zalneravi&ius
2016), were also collected (Table 1, Supplementary Fig. S1).

Plant material was collected in the field during 2019-2020. Selected intact fresh
leaves were kept in a cool place (~4—6 °C) until used in the FCM analyses; other leaves,
taken from the same individuals, were dried in silica gel for molecular analyses. Some
plants were transferred and cultivated in pots for chromosome counting. All collected
plants were subjected to FCM analyses. A selection of plants analysed by flow cytometry
was subjected to molecular analyses (sequencing of ITS and rpS15-ycfI regions) and
chromosome counting (see below and Table 1). Voucher specimens were deposited in the
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herbarium of the Institute of Botany, Plant Science and Biodiversity Centre, Slovak
Academy of Sciences (SAV).

Molecular analyses (ITS of nrDNA and rpS15-ycfl of cpDNA)

Total genomic DNA was extracted from ~3—4 mg of silica gel-dried leaf material using
the DNeasy Plant Mini Kit (Qiagen, Diisseldorf, Germany).

The ITS region of ntDNA (ITS1-5.8S-ITS2) was amplified in 150 individuals a priori
determined based on morphology. It included one to 10 plants per each taxon from 15
mixed populations (all except population RZC found later), comprising 44 individuals of
S. canadensis, 47 of S. xniederederi, 28 of S. virgaurea and 12 of S. gigantea, comple-
mented by one to three plants from single-species populations of S. canadensis (5 popula-
tions, 11 individuals) and S. virgaurea (4 populations, 8 individuals) (Table 1). The PCR
reaction mix contained a sample of gDNA, 0.38 U Pfu DNA polymerase (Promega, Mad-
ison, WI, USA), 1x Pfu reaction buffer with MgSO,, 0.2 mM dNTPs and 0.2 mM forward
and reverse primers (ITS5, ITS4; White et al. 1990), in a final volume of 13 pl. Amplifi-
cation was performed under the following PCR conditions: 94 °C for 3 min, 35 cycles of
94 °C for 30 s, 50 °C for 30 s, 72 °C for 1 min, followed by 72 °C for 10 min. PCR prod-
ucts were purified enzymatically with a mixture of exonuclease I and FastAP thermo-
sensitive alkaline phosphatase, according to the manufacturer’s protocol (Thermo Fisher
Scientific Inc., Waltham, MA, USA). The sequencing was carried out at Eurofins Genomics
Company (Konstanz, Germany) using both forward and reverse primers. The resulting
electropherograms were carefully inspected for the presence of double peaks (intra-
individual site polymorphisms, 2ISPs, following Potts et al. 2014), and when confirmed
by both forward and reverse sequences, were coded using [UPAC ambiguity codes. The
sequences were edited and aligned in Geneious v. R10 (Kearse et al. 2012). The sequence
alignment was analysed using NeighbourNet (SplitsTree4 v. 4.14.4; Huson & Bryant
2006) based on uncorrected P-distances and the ‘average’ option for treating ambiguous
bases.

Previously employed trnL-trnF and rpl32-trnL" intergenic spacers of cpDNA (e.g.
Galkina & Vinogradova 2019) did not yield sufficient resolution to differentiate between
S. virgaurea and S. canadensis, so neither were suitable to determine unequivocably the
maternal parent of the hybrids. Therefore, we explored several other cpDNA spacers that
are ranked among the most informative (Shaw et al. 2005, 2007, 2014, Prince 2015). The
rpS15-ycfl spacer turned out to be the most polymorphic one in the initial screening tests.
Finally it was amplified in 146 individuals, which were morphologically determined and
included: one to 16 plants per each taxon from 15 mixed populations (all except population
RZC, found later), comprising 50 individuals of S. canadensis, 47 of S. xniederederi, 29
of S. virgaurea and 5 of S. gigantea, as well as one or two plants from single-species pop-
ulations of S. canadensis (5 populations, 10 individuals) or S. virgaurea (4 populations,
5 individuals) (Table 1). The PCR reaction mix contained a sample of gDNA, 0.65 U
DreamTaq DNA polymerase (Thermo Fisher Scientific), 1x DreamTaq reaction buffer
with MgCl,, 0.2 mM dNTPs and 0.2 mM forward and reverse primers (rpS15, ycfl;
Prince 2015), in a final volume of 13 pl. PCR cycling conditions were the same as used
for the ITS region. PCR products were purified enzymatically as specified above. The
sequencing was carried out at Eurofins Genomics Company (Konstanz, Germany)
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mostly in one direction only (using the forward primer). The sequences were aligned in
Geneious v. R10, and five indels (insertion/deletion events) identified in the alignment
were coded as additional binary characters, following the simple indel coding approach
of Simmons & Ochoterena (2000), and appended to the nucleotide dataset. The final
dataset was analysed using the statistical parsimony network implemented in TCS v.1.21
(Clement et al. 2000). This analysis identified different haplotypes in the dataset,
revealed haplotype sharing between individuals and species, and determined genetic dis-
tances (number of substitutions or indel mutations) among them. Both ITS and rpS15-
yefl dataset-based analyses were performed with and without sequences of S. gigantea.
All sequences were submitted to the GenBank nucleotide database (Supplementary Table
S1, MZ005322-MZ0055471 for ITS, MZ020814-MZ020959 for rpS15-ycfI).

Chromosome counting

For karyological analyses, root tip meristems from potted plants of S. canadensis (two
populations, four individuals), S. xniederederi (one individual) and S. virgaurea (one
population, four individuals) were used (Table 1). The root tips were pre-treated in
a 0.002 M water solution of 8-hydroxyquinoline at 4 °C for about 16 h (overnight), fixed
in a 1:3 mixture of 98% acetic acid and 96% ethanol for 1-24 h, washed in distilled water,
macerated in 1N HCI at 60 °C for 5 min and then washed in distilled water. Tip squashes
were made using the cellophane square technique (Murin 1960). Permanent slides were
stained with a 7% solution of Giemsa Stain — Modified Solution (Fluka Analytical), in
Sorensen phosphate buffer, dried and observed in a drop of immersion oil using a Leica
DM 1000 microscope equipped with an HDCE-XS5 camera and Scopelmage 9.0 software
and the number of chromosomes counted.

Relative DNA content

Altogether 494 plants were analysed by flow cytometry using fluorochrome 4', 6-
diamidino-2-phenylindole (DAPI). Based on a priori morphological identification, the
following material was included in FCM analyses: one to 20 plants per each taxon from
16 mixed populations (91 individuals of S. canadensis, 51 of S. xniederederi, 83 of
S. virgaurea and 25 of S. gigantea) and one to 10 (mostly 4) plants from single-species
populations of S. canadensis (20 populations, 84 individuals), S. virgaurea (20 popula-
tions, 78 individuals) and S. gigantea (20 populations, 81 individuals) (Table 1). To
ensure the accuracy of the estimates of the relative DNA content, each plant was analysed
separately and only fresh plant material was used. Fresh material of Solanum pseudo-
capsicum L. (2.59 pg DNA/2C; Temsch et al. 2010a) was added for internal standardiza-
tion. Nuclei isolation and staining procedure followed the simplified two-step protocol
(Dolezel et al. 2007) with some modifications. Intact leaf tissue of the analysed plant was
chopped together with an internal standard in 1 ml of ice-cold Otto I buffer (0.1M citric
acid, 0.5% Tween 20). The crude nuclear suspension was filtered through 42-um nylon
mesh. For staining, 1 ml of a solution containing Otto II buffer (0.4 M Na,HPO,-12H,0),
2-mercaptoethanol (2 pl/ml) and DAPI (4 ug/ml) was added to the flow-through fraction.
Samples were analysed after 10 min incubation at room temperature. Fluorescence of at
least 5000 particles was recorded, and only histograms with symmetrical peaks with a coef-
ficient of variance (CV) of the standard and sample G1 peaks below 3% were considered.
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Flow cytometric analyses were carried out using a Cyflow ML instrument or Cyflow
Space instrument (Partec, Miinster, Germany) equipped with a UV-LED as an excitation
source. Flow cytometric histograms were evaluated using FloMax software v. 2.7d
(Partec, Miinster, Germany).

The relative DNA content was calculated as the ratio of G1 peak of standard Solanum
pseudocapsicum and G1 peak of the Solidago sample (the ratio standard/sample herein-
after referred to as RSS; 2C values presented unless otherwise stated). The relationship
between chromosome numbers and relative DNA content of S. canadensis, S. virgaurea
and S. xniederederi was verified using chromosome counts (cf. Table 1).

Box-and-whisker plots and scatter plots were used to depict variation in relative DNA
content of the taxa studied; t-tests and the Tukey-Kramer test (Tukey’s test for unequal
sample size; Tukey 1977) were used to test for differences in relative DNA content
between taxa. The normal distribution was tested a priori using the Kolmogorov-Smirnov
test. Analyses were carried out using STATISTICA 12 (StatSoft Inc. 2013).

Results
Molecular analyses (ITS of nrDNA and rpS15-ycfl of cpDNA)

The overall ITS alignment was 628 bp (base pairs) long and included 46 variable sites
(Supplementary Table S2). Intraindividual site polymorphisms (2ISPs), suggesting the
presence of multiple ITS copy variants in the genome, were detected in all the taxa exam-
ined. Within diploid S. canadensis and S. virgaurea, originating from both pure and
mixed populations, such positions were mostly rare and scattered, with up to two 2ISPs
per individual. In the tetraploid S. gigantea, 2ISPs were more frequent, with up to six
such positions per individual, suggesting higher intragenomic ITS copy variation. The
ITS sequences of S. virgaurea and S. canadensis were differentiated by seven substitu-
tions (SNPs, all located in ITS2), which can be treated as species-specific. All individuals
identified based on morphology as S. xniederederi had additive 2ISPs at all these seven
positions, clearly supporting the presence of both virgaurea- and canadensis-specific ITS
copy variants in their genomes and thus their hybrid origin. The only exception was one
non-flowering individual, SOL-N-JEL2, morphologically identified as S. xniederederi
(Supplementary Fig. S1C), which had an ITS sequence lacking any 2ISPs and was
identical to the predominant ribotype of S. canadensis (the individual latter denoted as
“IN”; Supplementary Tables S2, S3). Furthermore, in four individuals classified as
S. canadensis based on morphology (SOL-C-KRL13, SOL-C-MYDI1, SOL-C-BST1 and
SOL-C-CZA1), additive 2ISPs were recorded at four of the seven positions diagnostic for
hybrids (these four individuals hereinafter denoted as “Ic”; Supplementary Table S3).
The individuals Ic and Iy might be a result of backcrossing between S. canadensis and
S. Xniederederi and hereinafter are referred to as “supposed introgressants”. In the
NeighborNet diagram of ITS alignment (Fig. 2; S. gigantea omitted), individuals of
S. canadensis and S. virgaurea formed two well-differentiated, species-specific clusters,
whereas individuals of S. xniederederi were in an intermediate position between them, in
accordance with the observed additive 2ISPs patterns. The four supposed introgressants
were placed in a separate position, in between S. xniederederi and S. canadensis. When
individuals of S. gigantea were included in the NeighborNet analysis (Supplementary
Fig. S2), they appeared in a species-specific cluster, close to S. canadensis.
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S. virgaurea

S. xniederederi

Fig. 2. NeighborNet network based on the ITS sequences of nrDNA of the Solidago taxa studied (S. gigantea
not included). Terminal labels denote individual sequences (see population codes in Table 1). Three major
groups of ribotypes are coloured according to the species assignment; I¢, Iy — supposed introgressants of
S. canadensis and S. xniederederi.

The overall rpS15-ycfI alignment was 495 bp long. It included two variable positions
(substitutions) and five indels, coded as additional binary characters, which altogether
resulted in ten different haplotypes (with S. gigantea included; nine haplotypes without
S. gigantea; Fig. 3, Supplementary Fig. S3). Two widespread haplotypes were identified,
present in 71 individuals (haplotype H1) and 44 individuals (H9). Five haplotypes were
present in two to 15 individuals, and the remaining three haplotypes were individual-spe-
cific. Samples of S. canadensis included six different haplotypes (also including the sup-
posed introgressants with S. xniederederi); three of these appeared to be species-specific
(disregarding hybrids; HS5, H6, H8), two were shared with S. gigantea (H7, H9) and only
one was shared with S. virgaurea (the most widespread H1). There were four different
haplotypes in samples of S. virgaurea; three of them were species-specific (disregarding
hybrids; H2, H3, H4), and one (H1) was shared with S. canadensis (Fig. 3, Supplemen-
tary Fig. S3). Samples of S. xniederederi included four different haplotypes; two of
which were shared with S. canadensis (H6, H9), one with S. virgaurea (H3) and one was
the widespread one (H1) shared with both parental species. This implies that the hybrid-
ization occurred in both directions. The samples of S. gigantea contained either a species-
specific haplotype (H10) or shared haplotypes with S. canadensis (H7, H9). No geo-
graphic patterns in the distribution of haplotypes were recorded, which was confirmed by
a detailed screening of haplotype variation within population NEZB (Table 1). In
S. canadensis from NEZB, as many as four different haplotypes (H1, H6, H7 and H9)
were recorded. In S. Xniederederi from NEZB, two widespread haplotypes were recorded,
HI shared by both parental species, and H9 shared by S. canadensis and S. gigantea.
These findings also indicate that a significant portion of the overall variation in haplo-
types recorded here can be found within populations.
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Fig. 3. Maximum parsimony network of the cpDNA haplotypes (the rpS15-ycfI spacer) of the Solidago taxa
studied (S. gigantea not included). Circles show haplotypes (H1-H9), lines represent mutational steps; circle
sizes are proportional to haplotype frequencies (see scale) and colours indicate taxon. Ic, Iy — supposed
introgressants of S. canadensis and S. xniederederi.

Chromosome counts

Chromosome numbers are newly reported for four individuals of S. canadensis (from
populations ABU, NEZ), four individuals of S. virgaurea and one individual of
S. Xniederederi (both taxa from population NEZ) (Fig. 4A—C, Table 1). Our analyses
confirm chromosome counts 2n = 18 for all samples examined.

Relative DNA content

The mean CV values of the G1 peaks of the internal standard Solanum pseudocapsicum
and Solidago estimates were 1.92+0.39% and 2.18+0.44%, respectively. All individuals
of S. canadensis, S. xniederederi and S. virgaurea examined were exclusively diploid
with 2n~2x~18 (RSS 0.793-0.938). Relative DNA content estimates of S. gigantea cor-
responded to a tetraploid ploidy level 2n~4x~36 (RSS 1.432-1.507; Supplementary
Fig. S4). Solidago gigantea significantly differed from the remaining diploid taxa in 2C
values as well as in equivalent of Cx values of relative DNA content (Fig. 5A; Tukey-
Kramer test, P <0.001). Based on this finding the involvement of S. gigantea in the origin
of the studied hybrid can be ruled out.



198 Preslia 94: 183-213, 2022

A " -,‘.‘ ’.. B_..g.,,'- ," . &. P i C
4 ... k. " 4 e -ﬂi 3 g / \
o~ L T o n
to> R v
RSE. (A
3y '\ I’t 1

FV " TR

ol v PRSI N

\ '. ‘ -'. ‘ o | . v .I‘. .- . b

| ORRE 5 " ‘.
ST 'r"' \— ":-."u 1 ‘ . L4
it ¢ 3 $ . ' .
N R TITR, 10um S 10mumg
D 250
‘ S. canadensis
b .

., 200 S. xniederederi
@

= —> i S.virgaurea

S 150

o

5 «

T 100

Ne]

€

=}

Z 50

0 T i

0 100 200 300 400 500 600 700 800
Relative fluorescence

Fig. 4. Photographs of chromosome metaphase plates (2n = 18; A — SOL-C-NEZB7, B — SOL-N-NEZB1,
C — SOL-V-NEZB?7) and simultaneous flow cytometry analyses illustrating the differences in relative DNA
content (D — SOL-C-NEZB2, SOL-N-NEZB1 and SOL-V-NEZB5S) of individuals of Solidago canadensis,
S. xniederederi and S. virgaurea from the population Nezbudska Lucka in Slovakia (NEZ).

At the diploid level (Fig. 5B, C), statistically significant differences (Tukey-Kramer,
P < 0.001) were recorded in the relative DNA content of S. canadensis (RSS
0.793-0.838) and S. virgaurea (RSS 0.897-0.938) (Fig. 4D, E, Table 2). However, there
were no statistical differences in the relative DNA content of individuals from mixed and
single-species populations either of S. canadensis (t-test, t =—0.425, n.s.) or S. virgaurea
(t-test, t = —1.257, n.s.; Fig. SA, B). In general, variation in the relative DNA content
within particular diploid species was low (less than 5.8%; Table 2). The relative DNA
content of S. xniederederi (RSS 0.847-0.881) was clearly intermediate between
S. canadensis and S. virgaurea, as depicted by box-and-whisker plots (Fig. 5, Supple-
mentary Fig. S4). The mean RSS value of S. xniederederi (RSS 0.864) was negligibly
lower than the expected one [RSS 0.865; (mean RSS of S. canadensis + mean RSS of
S. virgaurea)/2]. Differences in relative DNA content between parental and hybrid diploid taxa
were relatively low but statistically significant (Tukey-Kramer, P < 0.001; Fig. 4D, E).
Values for S. xniederederi were 6% higher on average than those of S. canadensis and
5.6% lower than those of S. virgaurea. A histogram of their simultaneous FCM measure-
ments is shown in Fig. 4D. The values of the relative DNA content of S. xniederederi
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Table 2. Relative DNA content of the Solidago taxa studied. N (ind./pop.) — number of individuals and popula-
tions of particular taxa included in relative DNA content analyses; Ic, I — supposed introgressants of
S. canadensis and S. Xniederederi; Var. — variation [calculated as (maximumx100/minimum)-100].

Taxon (ploidy) N Relative DNA content (2C values)
(ind./pop.) . . )

Ploidy RSS minimum-maximum  RSS mean+SD Var.
S. canadensis 171/36 2n~2x~18 0.793-0.838 0.815+0.008 5.8%
S. Xniederederi 50/16 2n~2x~18 0.847-0.881 0.864+0.008 4.0%
S. virgaurea 161/36 2n~2x~18 0.897-0.938 0.916+0.009 4.5%
Ic 4/4 2n~2x~18 0.799-0.824 0.813+0.010 3.2%
In 171 2n~2x~18 0.841
S. gigantea 106/28 2n~4x~36 1.432-1.507 1.467+0.018 5.3%

were clearly distinct from S. canadensis and S. virgaurea in each of the mixed popula-
tions studied (Supplementary Fig. S5).
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The ITS analyses confirmed the hybrid origin (Fig. 5C, Supplementary Table S3) for
almost all flowering and non-flowering individuals identified based on morphology as
S. xniederederi (ITS sequences were analysed in 46 individuals out of 50 individuals
included in the FCM analyses) and with intermediate relative DNA content values
between S. canadensis and S. virgaurea. In addition, the exceptional non-flowering SOL-
N-JEL2 individual identified based on morphology as S. xniederederi, but with an ITS
sequence identical to S. canadensis (supposed introgressant Iy, see above) had a relative
DNA content intermediate between S. xniederederi and S. canadensis (RSS 0.841, Fig. 5).
The relative DNA content of the other four supposed introgressants I, classified based on
morphology as S. canadensis, but with additive 2ISPs in ITS sequences at four of seven
positions diagnostic for hybrids, was in the range of S. canadensis (RSS 0.799-0.824;
Fig. 5, Table 2). The ITS analyses confirmed the classification of the remaining diploid
individuals included in FCM analyses as S. canadensis (ITS sequences analysed in 51
individuals out of 171 individuals included in FCM analyses) or S. virgaurea (ITS
sequences analysed in 36 individuals out of 161 individuals included in FCM analyses)
(Fig. 5C, Supplementary Fig. S5).

Discussion
Ploidy levels and chromosome counts for the Solidago species studied

Diploid chromosome numbers/ploidy levels (2n = 2x = 18, 2n~2x~18) of S. xniederederi
detected in the present study agree with the previously published data for 32 populations
from Austria, Latvia, Lithuania, and Poland (Karpavi¢ien¢ & Radusiené 2016, Musiat et
al. 2020). Similarly, the diploid level (2n = 2x = 18, 2n~2x~18) here detected for S. virgau-
rea is the same as ~75 previously published chromosome records for this species from
Europe (Goldblatt & Johnson 1979-2021, Rice et al. 2015, Szymura et al. 2015, Nardi et al.
2018, Watanabe 2021). The only outstanding reports for S. virgaurea in Europe are three
decaploid (2n~10x~90) plants reported from a serpentine site in Bosnia and Herzegovina
(Pustahija et al. 2013). For S. canadensis, 23 chromosome/ploidy level records are avail-
able from Europe (cf. Szymura et al. 2015, Watanabe 2021), all of them reporting a dip-
loid ploidy level (2n = 2x = 18) for this species and thus they are in accord with our results.
The species is today considered to be exclusively diploid (Semple 2021); a tetraploid
chromosome count (2n = 36) was also previously reported for S. canadensis (Taylor &
Mulligan 1968, Semple & Chmielewski 1987). Solidago gigantea comprises in North
America more or less spatially segregated diploid, tetraploid and hexaploid populations
together with the rare occurrence of triploids and pentaploids (e.g. Semple et al. 1993,
2001, Schlaepfer et al. 2008a, Morton et al. 2019, Semple 2021). But, only tetraploid
plants of S. gigantea are confirmed by cytogeographic studies within its invasive range
in Europe, Russia and Japan (Schlaepfer et al. 2008a) and in south-western Poland
(Szymura et al. 2015). Some previous records of diploid and hexaploid plants of
S. gigantea in Europe (Maurer 1987 as cited in Jurenitsch et al. 1988, Jakobs 2004) are ruled
out based on re-examinations of original material or material from the provided localities.
These records were attributed to misidentifications, or technical failings (Schlaepfer et al.
2008a). Later, Hull-Sanders et al. (2009) report one diploid and six diploid-tetraploid
populations of S. gigantea from France, Germany and Switzerland, however, possible
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contamination of seed material or confusion with S. canadensis was not considered in
their study. In the present study, we recorded only the tetraploid ploidy level for 28 popu-
lations (81 plants) of S. gigantea from Slovakia, Poland, Hungary and Croatia, an area
poorly represented in previous studies (cf. Schlaepfer et al. 2008a, Szymura et al. 2015
and references therein).

Aneuploidy in the strict sense (the presence of supernumerary A chromosomes) is cur-
rently unknown in the Solidago taxa studied, but supernumerary B chromosomes have
been reported several times for S. canadensis (Kapoor 1978, Matecka 1989, Albers &
Bennert 1998), S. gigantea (Semple et al. 1984) and S. virgaurea (Lovkvist & Hultgéard
1999). Although B chromosomes were not detected in the present study, either by chro-
mosome counting or flow cytometry (i.e. by significant increase of relative DNA con-
tent), we cannot rule out their presence in some individuals. Studies on other plant groups
reveal an effect of B chromosomes on increasing genome size (e.g. Rosato et al. 1998,
Chumova et al. 2016, Fourastié et al. 2016). However, considering the generally smaller
size of B chromosomes and their unequal distribution in cells of the same individual
(D’ Ambrosio et al. 2017, Bednarova et al. 2021), their presence may not always increase
genome size enough for it to be detectable by flow cytometry.

The relative DNA content and its reliability for identifying Solidago xniederederi

Some previous studies used flow cytometry for ploidy level determination to identify
Solidago taxa (Verloove et al. 2017) or to map the distribution of cytotypes of polyploid
complexes such as S. altissima L. and S. gigantea (Halverson et al. 2008, Schlaepfer et al.
2008a, Etterson et al. 2016). Variation in genome size is rarely used to differentiate
Solidago taxa that do not differ in ploidy level (Szymura et al. 2015, Nardi et al. 2018). In
the present study, we showed that DAPI flow cytometry is suitable for revealing differ-
ences in genome size between diploid Solidago species and, moreover, for detecting their
hybrids. The relative values of the DNA content of the diploid taxa studied were very
close but did not overlap, and all plants analysed could be unambiguously assigned to
either S. canadensis, S. xniederederi or S. virgaurea, based on these values (Table 2, Fig. 4D,
E, 5; Supplementary Fig. S5). Further, the relative DNA content of hybrid plants was
clearly intermediate when compared with parental taxa (Fig. 5). Thus, the present study
demonstrated that, besides polymorphisms in ITS sequences, relative DNA content can
be reliably used to identify S. xniederederi. In particular, flow cytometry, which com-
bines accuracy with unsurpassed speed and inexpensiveness (Loureiro et al. 2010), can
be effectively used to identify Solidago plants with unclear morphology, seedlings and
non-flowering or sterile plants, or used for detailed screening of mixed populations and
progeny of plants from such populations. Morphology and genome size are highly corre-
lated in several homoploid hybridising complexes (HanuSova et al. 2014, Mackova et al.
2017, 2018).

The plants of S. xniederederi analysed are likely to be putative F1 hybrids with inter-
mediate relative DNA content between the parental species. However, variation in rela-
tive DNA content (Fig. 5C) showed that values for a few S. canadensis plants from mixed
populations were out of range of the values detected in pure populations, and in fact were
very close to the lowest values recorded for S. xniederederi. This pattern might indicate
some level of backcrossing with one of the parental taxa (cf. Bures et al. 2004, Mackova
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etal. 2017), but this requires further research. A few discrepancies between morphology,
ITS polymorphisms and DNA content values are also recorded, which indicates also
cases of backcrossing, but the usage of ITS data may be limited here (see below).

In some groups of plants, genome size is correlated with environmental conditions
and/or geographical distribution (Pecinka et al. 2006, Kolar et al. 2009, Duskova et al.
2010, Olsavska et al. 2012). However, we recorded little variation in relative DNA con-
tent of S. virgaurea samples (5.8%) collected over a substantial part of its distribution
area (Fig. 1) and over a wide range of altitudes (190-2130 m a.s.1.; Tables 1, 2). Similarly,
Nardi et al. (2018) found no significant differences in absolute DNA content between
closely related S. virgaurea subsp. virgaurea and coastal populations attributed to subsp.
litoralis. Furthermore, we recorded little variation in the datasets of the European popula-
tions of the invasive species S. canadensis (5.8%) and S. gigantea (5.3%; Table 2) stud-
ied. Therefore, it is likely that our results are applicable also in other parts of the non-
native range of S. canadensis, where it may share habitats with S. virgaurea s.1.

Previous studies have shown substantial differences in estimates of DNA content,
which may be due to different methodological procedures, different intercalary dyes as
well as different plant tissues or internal standards used (cf. DolezZel et al. 1998, Loureiro
et al. 2006, Bennett et al. 2008, Wang et al. 2015). In the case of S. canadensis, previous
flow cytometry measurements using intercalating fluorochrome propidium iodide (PI)
varied from 1.96 pg (Garcia et al. 2013), 2.1 pg (Bai 2012), 2.04 pg (KubeSova et al.
2010), 2.14 pg (Verloove et al. 2017), 2.03-2.21 pg (Szymura et al. 2015), 2.47 pg
(Paniego et al. 2019) to 5.87 pg (Guo et al. 2015). The value of 3.13 pg was recorded
using mithramycin dye (Galbraith et al. 1983). Similarly, variation in DNA values was
previously revealed by PI flow cytometry for S. virgaurea: 2.14 pg (Sliwinska & Thiem
2007), 2.14-2.16 pg (Pustahija et al. 2013), 2.26 pg (Temsch et al. 2010b), 2.31-2.33 pg
(Nardi et al. 2018), 2.34-2.36 (Szymura et al. 2015) and 2.35 pg (Garcia et al. 2013).
A distinct value of 1.77 pg was revealed using Feulgen densitometry (Vidic et al. 2009).
Differences in previous results indicate the need to use flow cytometry with caution for
identifying S. xniederederi as the present study showed that the relative DNA content
values of S. xniederederi and parental taxa were very close. Therefore, for the identifica-
tion of hybrid plants of S. xniederederi either by DAPI or PI flow cytometry, it is advis-
able to analyse a reasonable number of plants of the parent species at the same time. The
value of the DNA content or the standard/sample ratio of the suspected hybrid itself may not
always allow unambiguous identification. Instead, it should be verified that the revealed
value(s) is/are intermediate between the values for S. canadensis and S. virgaurea.

Genetic variation of the Solidago species studied

The ITS region of nrDNA is a high-copy locus prone to concerted evolution (Alvarez &
Wendel 2003), but it is widely known that the process of sequence homogenization is
imperfect and intragenomic variation may be common even in diploid species (e.g.
Weitemier et al. 2015). Therefore, the presence of 2ISPs among several individuals of
both S. canadensis and S. virgaurea, suggesting the presence of multiple ntDNA copy
variants within their genomes, is not surprising. Direct Sanger sequencing does not allow
exploration of the full intragenomic ITS diversity; instead, molecular cloning or
amplicon high-throughput sequencing would give more detailed insights. Nevertheless,
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even with direct sequencing, we were able to identify seven species-specific SNPs that
unequivocally differentiated S. canadensis and S. virgaurea and revealed additive pat-
terns in those sites in S. xniederederi. The same seven SNPs were previously used for the
identification of S. xniederederi by Pliszko & Zalewska-Gatosz (2016), while Galkina &
Vinogradova (2019) identified only four of them and skipping three additional sites located
at the 3’ end of ITS2 region. Perfect additivity in all the individuals of S. Xniederederi
examined, with only very few exceptions (see below), indicates that they represent an
early hybrid generation (likely F1), which is in accordance with their occurrence at sites
together with both parental species.

The genus Solidago is known for its complex taxonomy (Semple & Cook 2006) and
comprehensive phylogenetic reconstructions are still largely lacking. Recent phylogen-
etic studies have primarily focused on the origin of polyploids within particular (diploid-)
polyploid complexes, such as S. gigantea (Schlaepfer et al. 2008b), S. altissima (Sakata
etal. 2015) and S. houghtonii Torr. et A. Gray (Laureto & Barkman 2011) or on the origin
of ecotypes within the diploid species complex S. virgaurea (Sakaguchi et al. 2018).
Laureto & Barkman (2011) also resolved the relationships among 26 North American
Solidago species and it is noteworthy they revealed that the divergence in their nuclear
and chloroplast genomes only partially reflected the morphological differentiation of the
species studied. Both molecular markers used in the present study (ITS region of ntDNA,
rpS15-ycfl spacer of cpDNA) indicated a close relationship between invasive popula-
tions of S. canadensis and S. gigantea (Supplementary Fig. S2, S3), which agrees with
previous studies (Schlaepfer et al. 2008b, Laureto & Barkman 2011, Sakata et al. 2015).
Here we targeted one of the most variable intergenic spacers of cpDNA (Prince 2015),
but it still revealed the presence of haplotypes shared among the species analysed, along
with some species-specific ones. Explanations of haplotype sharing reported by previous
authors (Schlaepfer et al. 2008b, Sakata et al. 2015) also match our results: either the
phylogenetic resolution of cpDNA intergenic spacers, despite their high mutation rate, is
insufficient to differentiate between these close relatives, or extensive ancestral variation
has been maintained due to rapid radiation during early stages of diversification (cf.
Maddison & Knowles 2006, Moreno-Letelier et al. 2013). Our European samples of
S. canadensis shared two haplotypes with S. gigantea (H7, H9), but also the most wide-
spread haplotype (H1) with S. virgaurea. Because S. canadensis has spread secondarily
throughout Europe only since 1870-1900 (Weber 1998), the widespread sharing of the
haplotype with S. virgaurea is probably not due to introgression/hybridization between
these two species, but supports the hypothesis concerning the maintenance of ancestral
variation among species of Solidago.

Haplotype variation was found to be similar in native S. virgaurea (four haplotypes)
and invasive S. canadensis (five haplotypes). There are no geographic patterns in the dis-
tribution of haplotypes, which, along with high intrapopulational variation, is apparently
due to outcrossing and efficient seed dispersal in these species.

Who is the mother of Solidago xniederederi?

In angiosperms, chloroplasts are predominantly inherited maternally (Corriveau &
Coleman 1988). In accord with this general hypothesis, a solely maternal inheritance was
confirmed by analyses of the chloroplast haplotypes of the offspring of Solidago
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gigantea (Schlaepfer et al. 2008b). Building on this presumption, analyses of cpDNA
could be useful for revealing the maternal parent of S. xniederederi. Pliszko & Zalewska-
Galosz (2016), based on an analysis of the chloroplast rp/32—trnL locus, stated that
hybridization between S. canadensis and S. virgaurea can happen in both directions.
However, Galkina & Vinogradova (2019) later noticed that both parents are relatively
polymorphic at this locus, and therefore it is not possible to unambiguously answer the
question, which is the maternal parent? The results presented here for the rpS15-ycfI
spacer of cpDNA showed that 10 samples of S. xniederederi from five populations
shared the species-specific haplotypes H6 and H9 of S. canadensis, while two samples of
S. xniederederi from the same population shared the species-specific haplotype H3 of S.
virgaurea (Fig. 3, Table 1). Based on these findings, we can infer that hybridization has
occurred in both directions, i.e. both S. canadensis and S. virgaurea have been involved
as maternal progenitors of the hybrids.

Does Solidago xniederederi backcross with parental species?

While hybrid plants of S. xniederederi could be determined relatively reliably based on
intermediate morphological features (GudZinskas & Zalneravicius 201 6, Karpaviciené &
Radusiené 2016, Galkina & Vinogradova 2019), or by cytometric (this study) and ITS
analyses (Pliszko & Zalewska-Gatosz 2016, Galkina & Vinogradova 2019, this study),
the determination of introgressants resulting from further crossing of hybrids and paren-
tal taxa is much more challenging. Within our dataset, we identified two types of putative
introgressants based on some discrepancies between morphology, ITS polymorphisms
and DNA content values. Four plants (Ic) morphologically resembled S. canadensis but
displayed four additive 2ISPs (out of seven diagnostic ones for the hybrid) in ITS
sequences, and the relatively variable values for DNA content are still within the range of
variation recorded for S. canadensis (Fig. 3, 5, Supplementary Table S2). On the other
hand, one non-flowering plant (In) morphologically resembled S. xniederederi (Supple-
mentary Fig. S1C) but had a homogenized ITS sequence identical to S. canadensis and
its relative DNA content was intermediate between S. xniederederi and S. canadensis
(Fig. 5). Thus, both the above-mentioned cases could be attributed to the backcrossing of
S. xniederederi and S. canadensis, but with different extents of concerted evolution in the
ITS region and possibly also representing backcrossed individuals of different genera-
tions. Nevertheless, it is recognized that concerted evolution acting on ITS of ntDNA
may be unpredictable and, for instance, also different evolutionary constraints related to
the maintenance of secondary structures may be present and affect mutation rates
(Alvarez & Wendel 2003). Therefore, the utility of ITS sequences for detecting intro-
gression may be limited and additional evidence for ongoing introgression or back-
crosses is needed.

In any case, multiple polytopic origins of S. xniederederi (cf. Skokanové et al. 2020b)
indicate, no or only a slight reproduction barrier between S. canadensis and S. virgaurea.
It is expected that the reproduction barrier would not play an important role in further
crossing of S. xniederederi with any of the parental species. Because plants of S. xnieder-
ederi are visited by many insects, especially Diptera and Hymenoptera, and produce via-
ble pollen and seeds (Migdatek et al. 2014, Karpaviciené & Radusien¢ 2016, Pliszko &
Kostrakiewicz-Gieratt 2017, 2018), they could be successfully involved in further
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crosses either with parental species or with other hybrid plants. Therefore, the monitoring
of the progressive transition of mixed populations into introgressed populations or hybrid
swarms could be difficult, as it seems that at least plants resulting from backcrossing of
S. canadensis and S. xniederederi are impossible to distinguish from pure S. canadensis
by means of their morphology and/or genome size.

Solidago xniederederi and its potential threats

The ongoing homoploid hybridization between S. canadensis or S. Xniederederi and
native S. virgaurea, regardless of the current extent of this process, represents a potential
threat to the S. virgaurea complex (Skokanova et al. 2020b). This Eurasian species group
includes, besides S. virgaurea subsp. virgaurea, many taxa and ecotypes adapted to local
environments, and they are still undergoing speciation (Sakaguchi et al. 2018). Although
the taxonomic and genetic diversity of this species complex is insufficiently explored,
subsp. minuta, subsp. pineticola, subsp. litoralis, subsp. macrorrhiza and subsp. rupicola
are currently recognized as nominate subspecies in different parts of Europe (Skokanova
et al. 2020b). Hybridization between native and non-indigenous species can imperil
native taxa in many ways as documented by dozens of studies. The known scenarios
include reproductive interference and decline caused by heterospecific pollen (Suérez-
Marifio et al. 2019, Zaya et al. 2021), wasteful production of maladaptive hybrids or
demographic swamping (Wolf et al. 2001, Prentis et al. 2007), replacement by viable
hybrids or genetic swamping (Ottenburghs 2021), genetic erosion (Johnson et al. 2016),
reduced vegetative and sexual fitness of native species in contrast to hybrids (Gallego-
Tévar et al. 2019), genetic depletion and reduced fitness of native species (Kellner et al.
2012) and, in some cases, extinction of native populations (Rhymer & Simberloff 1996,
Buerkle et al. 2003, Todesco et al. 2016).

Although the degree of the negative effect on native species may differ from case to
case depending on the frequency of hybridization and hybrid fitness, hybrid viability and
fertility, these circumstances can change over time as hybrids evolve and adapt (Sloop
et al. 2009, Li et al. 2021). According to current knowledge, the hybrid Solidago
xniederederi does not spread vegetatively as successfully as S. canadensis because of
the absence of the long rhizomes typical of the invasive parent. But hybrid plants are very
viable and form large clumps with many flowering stems (Pliszko & Kostrakiewicz-
Gieralt 2019). Although the proportion of well-developed fruits is low, the seed germina-
tion rate is high, as is the production of viable pollen (Migdatek et al. 2014, Karpaviciené
& Radusiené 2016, Pliszko & Kostrakiewicz-Gieratt 2017). Moreover, seedlings of the
hybrid are less affected by allelopathic compounds of Solidago species than its invasive
parent S. canadensis (Karpaviciené et al. 2019), which can facilitate the establishment of
the hybrid even in areas densely covered with S. canadensis. Despite the low number of
hybrid individuals at localities inhabited by both parents (one, rarely two to ten hybrid
plants, exceptionally more, Skokanova et al. 2020b), we cannot rule out that the fitness of
the hybrid and its interaction with native S. virgaurea populations may change over time.

As hybridization between S. canadensis and S. virgaurea can occur in both directions
(Pliszko & Zalewska-Gatosz 2016, and this study) and backcrossing of the fertile hybrid
with at least S. canadensis seems probable (plants denoted as Ic and Iy in our results),
another aspect that needs to be considered is the flow of genes from native to invasive
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species. It is repeatedly documented that introgression of native fitness-increasing alleles
and their phenotypic effects further maintained by natural selection, might promote the
invasiveness (by increasing its ecological amplitude and facilitating range expansion) of
alien species (Ellstrand & Schierenbeck 2000, Currat et al. 2008, Vekemans 2010, Hall
2016). In our case, it is expected that S. canadensis, which is already highly invasive,
could pick up genes adapted to local conditions (adaptive introgression) from the highly
variable native S. virgaurea, creating even better-adapted and thus potentially more-
invasive phenotypes.

Currently, we can boldly refute the statement that “hybrids ... (Solidago xniederederi)...
do not appear to be common nor be able to persist” (CABI 2021b). Therefore, it is appro-
priate to stress the need for monitoring the occurrence, spread and behaviour of alien-to-
native hybrid Solidago xniederederi in order to mitigate its negative effects on the native
flora of Europe.

Supplementary materials

Supplementary Fig. S1. — Examples of non-flowering Solidago plants collected in the vegetative stage, identi-
fied based on their morphology as S. xniederederi.

Supplementary Fig. S2. — Genetic variation of the Solidago taxa studied revealed by a NeighborNet network
based on the ITS sequences of nrDNA.

Supplementary Fig. S3. — Maximum parsimony network of the cpDNA haplotypes (the rpS15-ycfI spacer) of
the Solidago taxa studied.

Supplementary Fig. S4. — Boxplots depicting the relative DNA contents (RSS, 2C values) of the diploid
(2n~2x~18) and tetraploid (2n~4x~36) Solidago taxa studied.

Supplementary Fig. S5. — Boxplots and circles depicting the relative DNA contents (RSS, 2C values) of the
Solidago plants and taxa studied in particular mixed populations.

Supplementary Table S1. — GenBank accessions numbers for ITS and rpS15-ycfIl sequences of the Solidago
plants analysed.

Supplementary Table S2. — ITS ribotypes of the Solidago individuals arranged by assignment to taxa.

Supplementary Table S3. — Polymorphisms in ITS sequences of Solidago individuals, arranged by populations.
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Rozdily v relativnim obsahu DNA spolehlivé identifikuji Solidago xniederederi, hybrida
puvodniho a invazniho druhu

Solidago xniederederi je nothotaxon vznikly v Evropé kiiZenim severoamerického druhu S. canadensis a pu-
vodniho druhu S. virgaurea. Rostouci pocet lokalit S. xniederederi vyvolava potfebu monitorovat jeho vyskyt,
Sifeni a chovani, aby bylo mozné piedejit pfipadnym negativnim diisledkiim pro ptivodni evropskou floru.
V této studii jsme se proto zaméfili na testovani a¢innosti DAPI priitokové cytometrie pro detekei hybridnich
rostlin S. xniederederi. Dale byly pouZity sekvence ITS (nrtDNA) a rpS15-ycfl (cpDNA) k potvrzeni hybridni-
ho piivodu analyzovanych rostlin a identifikaci matefského taxonu (pfijemce pylovych zrn). Sbér materialu
zahrnoval 60 Cistych populaci S. canadensis, S. gigantea a S. virgaurea a 16 smiSenych populaci hybridnich
rostlin S. xniederederi z 6 stati stfedni Evropy a pfilehlych oblasti. U vSech zkoumanych jedinct S. canadensis,
S. Xniederederi a S. virgaurea byl zjistén vyluc¢né diploidni (2n~2x~18) relativni obsah DNA, hodnoty pro
S. xniederederi byly intermediarni ve srovnani se S. canadensis a S. virgaurea. Relativni obsah DNA
S. xniederederi se 1isil asi jen 0 6 % od S. canadensis a S. virgaurea, hodnoty se ale nepfekryvaly a rozdily
byly statisticky vyznamné. Relativni obsah DNA druhti S. canadensis i S. virgaurea mél minimalni variabilitu,
takZe pritokova cytometrie miZe byt pro detekci hybridnich rostlin pouZzitelnd i v jinych oblastech, kde se rodi-
Covské druhy vyskytuji spole¢né. Aditivni intraindividualni polymorfismy v sekvencich ITS potvrdily hybrid-
ni ptivod jedinct (s jedinou vyjimkou) pfifazenych na zakladé morfologie k S. xniederederi. ITS analyzy také
odhalily mezi rostlinami odpovidajicimi morfologii a relativnim obsahem DNA druhu S. canadensis Etyii moz-
né introgresanty mezi S. xniederederi a timto druhem. Vysledky pro rpS15-ycf] ukazaly, Ze hybridizace prav-
dépodobné probihala v obou smérech. Molekularni analyzy ukazaly blizky vztah invaznich populaci S. cana-
densis a S. gigantea. Lze vSak vyloucit, Ze se druh S. gigantea podilel na vzniku studovanych hybridnich
jedinctl na zdkladé vyluéné tetraploidni ploidni rovné (2n~4x~36) zjisténé pro S. gigantea.
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