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Abstract: Epiphytic bryophytes are susceptible to air pollution. The disappearance of sensitive
species from highly polluted areas and their recovery after a decrease in pollution were
recorded in the second half of the 20th century in Europe. However, the effect of current air pol-
lution on the composition of epiphytic communities and the associated role of host-tree bark
chemistry have not been sufficiently studied. Here, the effects of acidifying air pollution on the
structure of epiphytic bryophyte communities hosted by tree species with different bark pH are
assessed. Due to the higher acid-buffering capacity of basic substrates, a smaller difference
between communities on host trees with high bark pH in areas with different pollution loads
was expected. Epiphytic bryophytes were studied at 50 sites with similar climate but contrast-
ing levels of SO, and NO, air pollution in central Europe. As a proxy for the current pollution
load at each site, in addition to SO, and NO, atmospheric concentrations, tissue N concentration
was measured in Hypnum cupressiforme. Abundances of species of bryophytes were recorded
on trunks of oaks (Quercus robur and Q. petraea, low bark pH expected) and ash (Fraxinus
excelsior, high pH expected). Ninety species of bryophytes were recorded. Acidifying air pollu-
tion still influences the structure of epiphytic bryophyte communities in Europe, despite the
lower levels of pollutants than previously. Atmospheric concentration of SO, was found to be
a significant environmental variable affecting structure of epiphytic bryophyte communities.
Ash with high bark pH hosted more diverse communities, including sensitive species, but were
just as affected by SO, pollution as oaks. Species richness, occurrence of epiphytic specialists,
and diversity of epiphytic bryophyte communities decrease with increasing SO, pollution, both
on oak and ash. However, it is likely that acidifying air pollution is not the sole driver of the
structure of current epiphytic communities in central Europe.
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Introduction

Bryophytes are poorly protected against the harmful effects of the atmosphere (Halling-
bick & Hodgetts 2000) due to their poikilohydric type of metabolism and that they obtain
all the nutrients and water they need through the entire surface of their body (Proctor
2009). Bryophytes also have an extremely high capacity for accumulation, including
some toxicants (e.g. metals, radioisotopes, organic pollutants) (Bates 2009). Presence of
particular species of bryophytes indicates specific environmental conditions (e.g. pH,
type of bedrock, humidity) as well as the presence of toxic substances (Hallingbédck &
Hodgetts 2000). Due to these facts, together with the wide distribution of the majority of
species, and their narrow ecological amplitudes, bryophytes are used as bioindicators and
biomonitors (e.g. Markert et al. 2003, Proctor 2009, Harmens et al. 2011, 2012, Plasek et al.
2014, Mahapatra et al. 2019) and indicators of ecosystem change (Pakeman et al. 2019).

Some pollutants are toxic for bryophytes. High levels of especially nitrogen and sul-
phur compounds have a negative effect on bryophyte tissue (Gilbert 1970, LeBlanc &
Rao 1973, Rao 1982). Negative changes in physiological functions (Nash & Nash 1974,
Mitchell et al. 2004), growth and biomass (Greven 1992, Shi et al. 2017) and changes in
bryophyte community structure (Mitchell et al. 2005, Zechmeister et al. 2007) are the
most common responses to increasing levels of pollution. The uptake of large quantities
of nitrogen and sulphur can adversely affect photosynthesis (Coker 1967, Song et al.
2012) and sulphur and nitrogen oxides can also cause acidification of the environment.
The biomass of forest bryophytes experimentally exposed to acid precipitation decreased
with decreasing pH (Hutchinson & Scott 1988). In addition, the germination of bryophyte
diaspores is adversely affected by low pH (Lobel & Rydin 2010). Changes in reproduc-
tion, especially, may be the first response of sensitive bryophytes, which is manifested
long before visible signs of damage to adult plants (LeBlanc & DeSloover 1970, Rao 1982).
The changes in community structure caused by sulphur and nitrogen compounds are
long-lasting, and the recovery of epiphytic communities in previously heavily polluted
areas appears to be slow (Zechmeister et al. 2007). Song et al. (2012) emphasize that the
increase in pollution load not only causes physiological damage to bryophyte plants or
even extinction of sensitive species, but also the risk of a global loss of biodiversity. In
addition, the toxic substances in the air can spread over long distances, disregarding the
boundaries of protected areas, national borders, or continents, and are even at high con-
centrations in areas without local sources of pollution (Hallingbidck & Hodgetts 2000).

Epiphytic species of bryophytes tend to be more sensitive to air pollution than species
growing on other substrates due to their more direct exposure to toxicants (e.g. Leith et al.
2008). Epiphytes also gain nutrients from stemflow (Bates 2009), which contains pollut-
ants from dry and wet deposition on the entire surface of the crown of a tree. The concen-
tration of pollutants in the stemflow can be much higher than in rain (Farmer et al. 1991).
In the second half of the 20th century, European bryologists reported the disappearance
of some species of epiphytic bryophytes from highly polluted areas and their recovery
after a decrease of pollution levels (e.g. Gilbert 1968, Miiller 1993, Bates et al. 1997,
Richter et al. 2009, Kucera et al. 2012). Hutsemékers et al. (2023) report great temporal
shifts in epiphytic bryophyte communities caused by changing levels of air pollution.
Lack of epiphytic bryophytes was reported in polluted industrial areas (e.g. Sim-Sim et al.
2000).
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Different species of trees differ in the characteristics of their bark, including its chem-
istry. Tree identity, therefore, determines the abundance and structure of epiphytic com-
munities (e.g. Cleavitt et al. 2009, Fritz et al. 2009, Becker et al. 2019, Mitchell et al.
2021). In pristine conditions, both acidic and alkaline bark host bryophyte species sensi-
tive to air pollution (Barkman 1958, Bates & Brown 1981). Sensitive species of epiphytic
bryophytes, such as the Orthotrichaceae family, however, were predominantly collected
from trees that have alkaline bark, i.e. a high pH (e.g. Fraxinus, Juglans, Malus) during
the period of heavy sulphur pollution in the Ostrava region (Czech Republic) in the 1970s
and 1980s. Farmer et al. (1991) report that epiphytic bryophytes are affected by acid pol-
lution, which reduces bark buffering capacity and increases its acidity. In addition,
Gilbert (1968) reports that high levels of pH and its acid buffering capacity can mitigate
the harmful effects of pollutants. Therefore, some species of trees may act as refugia for
sensitive species due to the buffering effect of their alkaline bark.

This study aims to determine the effect of acidifying air pollution on the structure of
bryophyte communities on trees with bark of different levels of pH in central Europe. It is
hypothesized, that the effect of pollution on bryophyte communities will vary depending
on the pH of their bark in areas with a similar climate. It is likely, that the detrimental
effect of pollutants will be less severe on trees with high bark pH levels.

Methods

Areas with a similar climate and different levels of acidifying air pollution were selected
in the Czech Republic, Poland and Germany (central Europe, Fig. 1A). Information on
climate and air pollution levels is that predicted by an atmospheric concentration model
based on mean annual precipitation (500-850 mm, Fig. 1B), mean annual temperature
(6.5-8.5 °C) (WorldClim; Hijmans et al. 2005), as well as five-year (2006-2010) average
NOx (Fig. 1C) and SO, (Fig. 1D) (1 km grid, EEA 2015; GIS analyses in ArcMap version 10;
ESRI 2011). Fifty woodlands in which both oaks (Quercus petraea or Q. robur) and ash
(Fraxinus excelsior) occurred were selected, with 25 in the areas with 8.0-12.0 ug-m~ NO,
and 0.5-4.5 ug-m™ SO, together (= low pollution), and 25 in areas with 12.5-16.5 ug-m~
NO, and 5.0-10.5 ug-m SO, (= high pollution).

Nitrogen (N) content in the tissue of Hypnum cupressiforme and bark pH were mea-
sured as proxy variables of air pollution to assess its actual level at each of the sites studied
(e.g. Harmens et al. 2011). Specimens of H. cupressiforme were collected from three of the
trees studied at each site, 130 cm high above ground. For N determination, about 1.50 mg of
ball-milled green tissue was Kjeldahl-digested with concentrated sulphuric acid and ana-
lysed calorimetrically as NH," using flow injection analysis. Bark pH was measured using
a flat electrode for measuring surfaces (WTW SenTix Sur, Vario pH meter) of small pieces
of bark in the laboratory after spraying the bark with 0.1 M KCl (Farmer et al. 1990).

One of the authors (J.P.) did the field sampling for consistency. Five oak and five ash
trees were selected by stratified random sampling at each study site that met the following
criteria: trees with straight trunks, DBH at least 15 cm, position within the forest at least
10 m from the forest edge and at least 10 m from other sampled trees. All species of
bryophytes and their abundance (three-point scale: 1 = up to 1 cm?; 2 = 1-400 cm?; 3 =
over 400 cm?) were recorded from the ground to 2 m height on the trunks of the selected
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Fig. 1. Map showing the location of the sites studied (A), along with the mean annual precipitation (B) and
model-predicted mean atmospheric NOy (C) and SO, (D) concentrations characteristic for the sites. For C and
D see next page.
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trees. Tree size (DBH) had a significantly different effect on epiphytic community rich-
ness on oak and ash (Poisson generalized linear mixed model with site ID as random fac-
tor, tree species x DBH interaction: z=-2.7, P <0.01). Therefore, separate univariate and
multivariate models were fitted for each tree species. DBH was also used as a covariate in
these models.

The field work was done in 2016 and 2017. The environmental variables used in statis-
tical analyses (Supplementary Table S1) included: model mean NOy and SO, concentra-
tion (EEA 2015), mean annual temperature, temperature maxima and minima, mean
annual precipitation, mean precipitation in the wettest and the driest month of the year,
temperature annual range, average altitude, N concentration in Hypnum cupressiforme
tissue, mean bark pH (for oak and ash separately, square-root transformed in statistical
models), mean host tree diameter at breast height (DBH, for oak and ash separately) and
legal protection status of the site (binary variable). All climatic variables came from
WorldClim2 (Fick & Hijmans 2017). The list of epiphytic specialists (Supplementary
Table S2) was compiled by analysing data in the Bryoatt database (Hill et al. 2007). For
each species, an index of its affinity for particular trees were calculated. The Bryoatt data-
base presents the affinity for each bryophyte species for particular substrates on a three-
point scale (0-2). The ratio between the indicator value for living on trees and the sum of
all indicator values referring to other substrates, but with all types of rocky substrates
merged into a single indicator value using the highest occurrence frequency point on
rocky substrates, were calculated. The species of bryophytes with an index value higher
than 1 were considered as epiphytic specialists. One exception was Hypnum andoi, which
had an index value of 1. Based on field experience, this moss was not considered an
epiphytic specialist as it grows on other substrates in the area studied.

A paired t-test was used to determine differences in bark pH between ash and oak trees
at the sites studied and Pearson correlation to test the association between ash and oak
bark pH between sites. A Spearman rank correlation matrix was computed in order to
evaluate the associations between the N content of Hypnum, bark pH, NO, and SO, atmo-
spheric concentration as proxies of air pollution level, and climatic variables (Supple-
mentary Fig. S1). Poisson generalized linear models were computed to test which envi-
ronmental factors determine the total and specialist species richness of epiphytic commu-
nities separately on ash and oak. The models were built from candidate environmental
predictors using the stepwise selection procedure and retaining only the significant terms
(P <0.05) in the models. The full tables summarizing analyses of the differences are pro-
vided in Supplementary Table S3.

Distance-based redundancy analyses (db-RDA) with square-rooted Bray-Curtis dis-
similarity, based on presence-absence data of bryophytes for particular sites, were used to
identify drivers of community composition. Separate db-RDA analyses were constructed
for oak and ash. In the db-RDAs, the effects of NOy, and SO, atmospheric concentrations
was determined in order to determine whether they are drivers of bryophyte community
composition, using a forward stepwise predictor selection. In this model, DBH and addi-
tional environmental covariates (average altitude, temperature maxima and minima, mean
annual temperature, temperature annual range, mean annual precipitation, mean precipi-
tation in the wettest and the driest month of the year) were used to remove possible
confounding effects between environmental gradients and pollution level. To test the
significance of predictors and the final model, a Monte-Carlo permutation test with
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Fig. 2. The air pollution proxies. Pair panel plot showing the distribution and pair correlations of environmental
predictors used in this study, with correlation ellipses and their centroids (narrower ellipse = stronger correla-
tion), and with smoothed fit through LOESS regression. The upper triangle shows the values of the Spearman’s
rank correlation coefficient. The pH of oak bark (pH mean Q) correlated with data on SO, and NO, atmospheric
concentrations, whereas the pH of ash bark (pH mean F) correlated only with SO, data. The N concentration in
Hypnum tissue (N Hypnum) correlated only with SO, data. *** P < 0.001, ** P < 0.001, * P < 0.01

999 permutations was used. Additional unconstrained ordinations (Principal Coordinate
Analysis) with passively projected atmospheric SO, concentration were conducted. These
analyses of community composition based on total differences were further supplemented
by analyses focusing on the turnover and nestedness components of beta-diversity. Dis-
similarity matrices based on (qualitative) turnover and nestedness pairwise beta-diversity
components were computed. These matrices were subsequently subjected to the same
db-RDA analyses supplemented by Monte-Carlo permutation tests as the Bray-Curtis
dissimilarity matrix. All statistical analyses were done in R, ver. 4.2.2 (R Core Team 2022);
multivariate community composition and beta-diversity analyses were computed in
R packages vegan (Oksanen et al. 2022) and betapart (Baselga et al. 2023)
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Fig. 3. Dependence of total species richness and the number of epiphytic specialists growing on Fraxinus

excelsior on model predicted air SO, concentration (S-model; pg/mt). The regression lines correspond to Pois-
son GLM fits.

Nomenclature of bryophyte taxa is according to Hodgetts et al. (2020). Species Ulota
crispa (Hedw.) Brid., U. crispula Bruch and U. intermedia Schimp. were grouped as
Ulota crispa s. lat. The genus level was used in analyses when specimens lacked neces-
sary parts for species identification (in the case when there was no determined species of
that genus occurring on the same study site); taxon Orthotrichum sp. s. lat. includes
Lewinskya and Orthotrichum genera in that case.

Results

A total of 90 species of bryophytes were recorded, including 81 species of mosses and 9 liv-
erworts; 17 species were considered to be epiphytic specialists (Supplementary Table S2).
The most frequently encountered species were mosses Pylaisia polyantha and Brachy-
theciastrum velutinum (found on 373 and 362 trees of the 500 host trees studied, respec-
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Fig. 4. Dependence of total species richness and the number of epiphytic specialists growing on Quercus sp. on

significant air-pollution predictors (N-model for all species, S-model for specialists; NO, and SO, concentra-
tions in pug/mt). The regression lines correspond to Poisson GLM fits.

tively). Epiphytic communities on particular host trees consisted of 1-25 species (with
amedian of 7 species). Per study site, 13—37 species (with a median of 23), were recorded.

The assumption that the pH of the bark of ash is higher than that of oak was confirmed
(paired t-test within study sites: to=—11.9, P <0.001), but the pH values recorded for the
two trees were correlated (Pearson r = 0.544, t;3 = 4.5, P < 0.001). Ash pH value ranged
from 4.10 to 5.39, with a median of 4.93; oak pH value ranged from 3.72 to 5.01, with
a median of 4.39. The proxies for air pollution were weakly correlated (Fig. 2). Data on
SO, atmospheric concentration were significantly correlated with both ash and oak bark
pH, while NO, data correlated only with oak bark pH. The N concentration in Hypnum
tissue was only correlated with SO, data.

The SO, atmospheric concentration (variance accounted for =0.24,z=-3.8, P <0.01;
Fig. 3), DBH (variance accounted for = 0.15, z= 3.8, P < 0.01), and precipitation in the
driest month (variance accounted for = 0.07, z = 0.0095, P < 0.01) were found to be sig-
nificant drivers of species richness of epiphytic communities on ash; NO, atmospheric
concentration (variance accounted for =0.11, z=-2.5, P =0.01; Fig. 4) and precipitation
in the driest month (variance accounted for = 0.07, z= 2.2, P < 0.05) significantly influ-
enced species richness on oak. The occurrence of epiphytic specialists was significantly
associated with the model prediction of SO, atmospheric concentration (variance accounted
for = 0.43, z=-5, P < 0.001; Fig. 3) on ash and also on oak (variance accounted for =
0.14,z=-3.1, P <0.01; Fig. 4), where the number of specialists was furthermore associ-
ated with the mean precipitation in the driest month (variance accounted for = 0.10, z=
2.7,P <0.01).
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Fig. 5. A db-RDA diagram showing the association between the model prediction of SO, atmospheric concen-
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epiphytic specialists. Species abbreviations are listed in Supplementary Table S4.
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Fig. 7. PCoA diagram of site scores based on the differences in the bryophyte communities on Fraxinus. Sym-
bol size indicates S-model variable at individual sites. The red arrow displays passively projected trend in SO,
atmospheric concentration. Correlation of SO, atmospheric concentration with the first two axes: R*=0.39, P <
0.001 (Monte-Carlo permutation test with 999 permutations).
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Fig. 8. PCoA diagram of site scores based on differences in the bryophyte communities on Quercus. Symbol
size indicates S-model variable at individual sites. The red arrow displays passively projected trend in SO,
atmospheric concentration. Correlation of SO, atmospheric concentration with the first two axes: R?=0.22,P =
0.002 (Monte-Carlo permutation test with 999 permutations).
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The model prediction of SO, and NOx atmospheric concentrations were significantly
correlated with the bryophyte community on ash (SO,: P < 0.001, NOx: P = 0.03; db-
RDA - simple effects tested using Monte-Carlo permutation tests). However, only SO,
was retained in the model built by stepwise selection, which accounted for 4.3% of the
variability (pseudo-F,; 3 = 2.3, P = 0.001; Fig. 5). SO, was the only pollution predictor
having a significant association with bryophyte communities growing on oak (explained
3.1% of variability, pseudo-F; 3 = 1.6, P = 0.01; Fig. 6). Epiphytic specialists, especially
Lewinskya striata, Nyholmiella obtusifolia, Orthotrichum pallens, Platygyrium repens
and Ulota crispa s. lat. were negatively associated with the SO, concentration gradient in
both ordination diagrams (Figs 5-6). On the other hand, species that thrive in acidic envi-
ronments, such as Tetraphis pellucida and Herzogiella seligeri, which are predominantly
epixylic and grow on decaying wood, as well as the generalist Plagiothecium curvifolium
and Pohlia nutans, were recorded growing even under high concentrations of SO, (Figs 5-6).
In addition, unconstrained PCoA analyses indicated, that SO, concentration was associ-
ated with the most important gradient in community composition (PCo 1) on ash (Fig. 7)
and the second most important gradient (PCo 2) on oak (Fig. 8).

Analysis of beta diversity revealed that the significant impact of SO, on species com-
position was given by its effect on species turnover (ash: pseudo-F, 4 = 2.1, P =0.004;
oak: pseudo-F;4 = 1.63, P = 0.012). The association with bryophyte community
nestedness was not significant.

Discussion

Our results indicate that even with lower concentrations of pollutants than in the second
half of 20th century, the current air pollution levels of SO, and NO still affect epiphytic
bryophyte communities in present-day central Europe. This conclusion assumes that the
communities of bryophytes reflect current rather than past pollution levels due to their
potential for rapid dispersal.

SO, concentrations at most sites were in the high pollution levels of 8—10 ug/m’. These
values correspond to the critical SO, load of 10 pg/m® defined for lichens (bryophytes
were not assessed), which is only slightly lower than that of 15 ug/m’ for natural vegeta-
tion (CLRTAP 2024). Our results indicate that the critical SO, load, i.e. concentration
below which significant harmful effects do not occur according to present knowledge, is
below 10 pg/m?® for epiphytic bryophytes. This reduction in the critical load is consistent with
the patterns reported for plant sensitivity to other pollutants such as NH; (CLRTAP 2024).

Acidifying pollutants can result in a decrease in bark pH (Stetzka & Werthschiitz
2008). As initially expected, the pH of ash bark was higher than that of oak bark. Bark pH
was correlated with both SO, and NO, model atmospheric concentration in oaks, while
ash bark pH was correlated only with SO, data, presumably due to its greater acidifying
effect than NO,. Nevertheless, bark pH can be influenced by various factors, making it
challenging to establish a clear relationship between air pollution levels and bark pH
(Larsen et al. 2007). For instance, atmospheric ammonia, which was not included in this
study, may have the opposite effect of acidifying pollutants and increase bark pH (Pescott
et al. 2015). The effects of air pollution and bark pH on bryophytes may be complemen-
tary, even if these variables are not directly correlated (e.g. Mitchell et al. 2005, Zech-
meister et al. 2007).
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The N concentration in Hypnum tissue did not correlate with the NO, model-predicted
atmospheric concentration data. This could be attributed to sampling design. The aim
was to obtain an accurate image of NOy influence on the communities studied, so
Hypnum was collected directly from the host trees. However, canopy drip can substan-
tially influence the measured concentration of NO, (Harmens et al. 2015), which is higher
under canopies (Kluge et al. 2013, Skudnik et al. 2014). This methodology enabled the
development of a proxy for pollution with real effect on the communities studied. On the
other hand, NOy is not the only source of nitrogen for epiphytic mosses, as ammonia and
ammonium may be the predominant forms of reactive N in rural areas (Tang et al. 2021).

The epiphytic communities are clearly more species-rich in areas with low SO, pollu-
tion. Increasing loss of bryophyte species with increasing deposition of pollutants is also
reported by e.g. Larsen et al. (2007) and Fritz et al. (2009). The tolerance of bryophytes to
pollutants varies (e.g. Smith 2004). In this study, epiphytic specialists were mostly found
in areas with low SO, concentrations and absent in those with high air pollution. The
overall composition of epiphytic bryophyte communities also changes along an air pollu-
tion gradient (Song et al. 2012, Hutsemékers et al. 2023). It is mainly generalists and
acidophilous species that thrive even in polluted areas. Replacement of epiphytic com-
munities of mosses in the family Orthotrichaceae by more acidophilic community is also
reported in the British Isles (Bates et al. 1997).

However, the spread of some bryophyte species may also reflect the level of pollution by
ammonia (Sheppard et al. 2011), affecting trophic levels and pH of host tree bark (Pescott
etal. 2015). Also processes during recolonization after a period with very high levels of
acidifying air pollution are not recorded. The high proportion of unexplained variability
may indicate that current air quality levels are not the sole driver of the current communi-
ties. Other environmental factors and past pollution events may also have played a role.

Bryophyte communities on oak and ash trees differed. Communities on ash were rich in
species and contained more epiphytic specialists. Ash hosted also a higher number of the
species recorded in Database of Lichens and Bryophytes in the Czech Republic (Man et al.
2022). Lobel et al. (2006) and Mezaka et al. (2012) report that tree species and bark pH are
the most important variables determining the structure of epiphytic communities, species
composition, as well as species richness. On the other hand, e.g. Palmer (1986) takes the
view that the host tree is not as important as the set of conditions associated with the tree.
Frahm (1992) draws attention to the fact that the degree of association with a specific type
of host tree decreases with increasing air humidity. The results indicate that air pollution
affects communities more on host trees with more acidic bark, as was initially hypothe-
sized. Both the communities on oak and ash were associated with the level of air pollution.

Conclusions

Level of acidifying air pollution is associated with species composition and richness of
epiphytic communities of bryophytes in central Europe in spite of the relatively low
recent concentrations of pollutants. Ash with a high bark pH hosted more diverse com-
munities with frequent presence of sensitive species, but also communities the presence
of which was determined by a high SO, atmospheric concentration. Species richness,
occurrence of epiphytic specialists and diversity of epiphytic bryophytes communities
decreased with increasing SO, level, both on oak and ash. Effect of acidifying air pollu-
tion on bryophyte communities did not vary depending on the host tree.
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Spoleéenstva epifytickych mechorostii na dvou druzich stromi lisicich se chemickym
sloZzenim kury reaguji shodné na znecisténi ovzdusi

Epifytické mechorosty jsou citlivé na znegisténi ovzdusi. Ustup n&kterych druhti z oblasti s vysokou mirou
imisni zatéZe a jejich postupny navrat po sniZeni koncentraci polutanti byl zaznamenan v druhé poloviné 20.
stoleti na mnoha mistech Evropy. Vliv souc¢asného znecisténi ovzdusi na sloZeni epifytickych spolecenstev
a souvisejici role chemismu borky hostitelskych dfevin v§ak nebyly dostatecné prozkoumany. V této studii
hodnotime vliv kyselého znecisténi ovzdusi na strukturu epifytickych spolecenstev mechorostii na stromech
s rozdilnym pH borky. Vzhledem k vyssi pufracni kapacité bazickych substratti jsme v oblastech s riiznou mi-
rou imisni zat€Ze oCekavali mensi rozdily mezi spoleCenstvy na stromech s vy$§im pH borky. Epifytické
mechorosty byly studovany na 50 lokalitdch ve stiedni Evropé s podobnymi klimatickymi podminkami, av§ak
s rozdilnou Grovni znecisténi ovzdusi SO, a NOy. Jako zastupnd proménna soucasné imisni zatéZe byl na kazdé
lokalité kromé modelovanych atmosférickych koncentraci SO, a NOx méfen obsah dusiku v mechu Hypnum
cupressiforme. Mechorosty byly studovany na kmenech dubti (Quercus robur a Q. petraea, s o¢ekavanym niz-
§im pH borky) a jasanl (Fraxinus excelsior, s o¢ekavanym vyssim pH borky). Celkem bylo zaznamenano 90
druhtt mechorosti. Zjistili jsme, Ze zneciSténi ovzdusi ovliviiuje epifyticka spolecenstva i v soucasné Evropé,
prestoZe je mira imisni z4té€Ze niZsi neZ diive. Koncentrace SO, v ovzdusi méla signifikantni vliv na strukturu
spolecenstev epifytickych mechorosti. Jasany s vy$§im pH borky hostily rozmanitéjsi spolecenstva zahrnujici
citlivé druhy, avSak i ony byly ovlivnény SO,, podobné jako spolecenstva na dubech. Druhové bohatost, vyskyt
epifytickych specialistii a rozmanitost spolecenstev epifytickych mechorosti klesaly s rostoucim znecisténim
SO,, a to jak na dubech, tak na jasanech. Znecisténi ovzdusi je vSak pravdépodobné jen jednim z fady faktort
ovliviiujicich strukturu soucasnych epifytickych spolecenstev ve stiedni Evropé.
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