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Lichens associated with aquatic and semi-aquatic habitats are a specific ecological group of sym-
biotic organisms. Distribution patterns, especially those of freshwater lichens and factors deter-
mining their occurrence, are poorly recognized. The species richness and composition of lichens
were studied in the splash and submerged zones of Carpathian mountain streams. Habitat parame-
ters, including pH, water conductivity, dissolved oxygen content, silting and light intensity at
sampling sites, were used in the analysis. The streams differed greatly in terms of the species
composition; only three lichens (Thelidium minutulum, Verrucaria hydrophila and V. prae-

termissa) of the entire pool of 29 recorded species were found in all streams. This fact does not
directly relate to the habitat parameters measured either at the level of individual streams or con-
sidering all the streams studied. Instead, the differences in the species composition of lichens
increased with the geographical distance between streams, even locally. This means that the
occurrence of lichens in mountain streams is strongly site-dependent and the variability in the
habitat is of less importance for species presence. Presumably lack of effective natural vectors
and weak dispersal ability are strong limiting factors for freshwater lichens. Nevertheless,
increased ion concentration in water can considerably promote the development of the thalli of
some species of lichens, as in the case of Verrucaria praetermissa, while it can be a limiting factor
for others, as in the case of V. hydrophila.

Keywords: aquatic habitat, distribution, ecology, flysch watercourses, lichenized fungi, species
diversity

Introduction

Understanding the combined effect of environmental factors on organisms is still
regarded as one of the greatest deficiencies in the ecological conservation of water envi-
ronments (Sala et al. 2000, Darling & Côté 2008). Aquatic lichens, especially freshwater
ones, are one of the least studied groups (Tierno de Figueroa et al. 2013). The occurrence
of species is usually reported, but rarely data on their habitat preferences and distribution
are available (Rosentreter 1984, Gilbert 1996, Thüs 2002, Harada & Wang 2006,
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Nascimbene & Nimis 2006, Krzewicka & Hachułka 2008, Krzewicka 2009). Lichens
constitute a symbiotic association of two units, a lichen-forming fungus (mycobiont)
and an alga and/or a cyanobacterium (photobiont), forming a combined organism
(Ahmadjian 1993). The vast majority of lichens colonize terrestrial ecosystems and are
incapable of surviving under strongly hydrated conditions (Thüs et al. 2014). However,
there are species that occur in aquatic or semi-aquatic freshwater and marine habitats.
Lichen species directly related to water constitute a relatively small group worldwide
(Thüs & Schultz 2009). Due to high demands on the water clarity and sensitivity to pollu-
tion, many of the aquatic lichen species are considered to be endangered or rare in some
regions of Europe (Cieśliński et al. 2006, Nascimbene et al. 2007, Liška et al. 2008,
Krzewicka et al. 2017, Matura 2020). They constitute about 6.5% of the global number of
lichen species but only few (approximately 1.5%) occur in freshwater (Thüs et al. 2014).
Certain species of lichens in this ecological group seem to be non-specific and wide-
spread (see e.g. McCarthy 1991, Harada 1996, Krzewicka 2012, Orange 2014); on the
other hand, species richness and composition often differs in adjacent natural-flowing
watercourses and the factors affecting the local distribution of such lichens are poorly
known (Pentecost 1977, Gilbert & Giavarini 1997, Krzewicka et al. 2017).

Lichen biota associated with mountain rivers and streams is characterized by zonal
distribution of species, which is generally determined by the distance from the main cur-
rent (Santesson 1939, Ried 1960, Gilbert 1996, Krzewicka & Galas 2006, Coste 2010,
Krzewicka et al. 2017). Depending on the seasonal dynamics of the water flow, splashing
intensity and duration of flooding resulting in the submergence of thalli, various patterns
of zonation have been distinguished. Based on the duration of the annual floods in
submontane and montane streams, Ried (1960) distinguished four main zones of occur-
rence of lichens relating to water requirements and tolerance of a species, i.e. aquatic
lichens, amphibious lichens, tolerant of submergence lichens, and terrestrial lichens
clearly sensitive to submergence. Gilbert (1996) recognized various zones on the basis of
the duration of the total submergence of lichen thalli. On the other hand, Coste (2010)
designated zones based on the duration of the periods for which they remained dry or in
close contact with water. The dynamics of water flow in mountain streams in central
Europe is usually high and the complete drying of the bedrock in the bed of a stream
is very rare. A simple division based on thallus intimacy with water or exposition to air is
often used (Nascimbene et al. 2007, Krzewicka et al. 2017). In this approach, the first
zone usually comprises the permanently submerged bottom of a stream and the second
the splashed or occasionally flooded and wet rocks and stones on the lower bank
(Krzewicka et al. 2017).

In addition, to the dynamics of stream currents, it is widely believed that the diversity
of freshwater lichens may be largely dependent on various other habitat factors, including
the type and stability of the substrate (Thüs 2002, Krzewicka & Galas 2006), light avail-
ability (Pentecost 1977, Nascimbene & Nimis 2006), degree of silting (Gilbert 1996,
Gilbert & Giavarini 1997) and physical and chemical parameters of the water
(Nascimbene & Nimis 2006, Nascimbene et al. 2009, Krzewicka et al. 2017). However,
the actual effect of basic water and external habitat parameters still remains poorly stud-
ied. Pentecost (1977) was the first to draw attention to the fact that the occurrence of spe-
cies and development of thalli are strongly determined by the mineral composition of
water. Strong attachment to a given type of substrate, either alkaline (calcareous rocks) or
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acidic (granite crystalline rocks), is often an attribute of epilithic lichens (Thüs 2002).
However, the presence of typically acidophilous lichens on alkaline substrates in acidic
water has also been reported for freshwater lichens (Gilbert & Giavarini 1997).

During field research on freshwater lichens in mountain streams, we observed that
despite apparently similar habitat conditions and close proximity of streams, the species
composition of lichen assemblages differed considerably. The main purpose of this study
was to examine the freshwater lichen assemblages associated with mountain streams in
terms of their richness, species composition and habitat requirements. We tested the fol-
lowing hypotheses: (i) the differences in the composition of assemblages of lichens
between streams are due to differences in the habitat conditions they provide; and (ii) the
pattern in the distribution of the species in streams is largely determined by changing hab-
itat conditions downstream. In addition, we intended to identify lichens with a narrow
ecological amplitudes to define specific conditions they prefer and to verify differences
in the species richness and composition between the submerged and splash zones. The
final purpose of this study was to verify whether the abundance of the thalli of selected
common lichens in a stream can serve as an indicator of water quality.

Material and methods

Study area

Mountain streams in the Beskid Sądecki Mts (Western Carpathians), which consist of
sedimentary rocks, known as the Carpathian flysch, were studied. Sandstones, shales and
marl deposited in this area were folded in the Tertiary forming a dam (Birkenmajer &
Oszczypko 1989). The streams and main rivers in the Beskid Mts all flow northwards to
the Baltic Sea. The river system is characterized by a high density and its development is
favoured by high rainfall, considerable slope in the terrain and a low permeability of the
flysch substrate. The density of the river system ranges from 1.5 to 4.0 km per km2 and
the fall in the streams can reach 130‰. A high variability in the level of water is typical of
Carpathian rivers and streams. Flooding in the study area occurs mainly in two seasons:
in spring during the melting of the snow cover and in summer, usually in late June and
early July, caused by heavy rain. The water level fluctuates up to 3 m in small streams and
even up to 4 m in large streams in the Beskid Mts (Ziemońska 1973, Radecki-Pawlik
2006).

Field studies and data sampling

Ten mountain streams were selected for study (the abbreviations given here are used sub-
sequently in this paper): Potok Baraniecki (BA), Potok Bliszcze (BL), Potok Czaczowiec
(CZ), Potok Kozłecki (KO), Potok Młodowski (ML), Potok Przysietnica (PR), Potok
Szczawniczek (SZ), Potok Uhryński (UH), Potok Wierchomlanka (WI) and Potok
Wojkowski (WO) (Electronic Appendix 1). They flow through the lower mountain zone
covered by seminatural beech and mixed coniferous forests and are not directly affected
by human settlement and agriculture.

The research was carried out in summer 2017 when the weather was relatively uni-
form and stable. Data was collected after a minimum of a three-day rainless period. The
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sampling sites were nearly equally spaced out and included the upper, middle and lower
parts of each stream. Altogether, data from 43 sampling sites was collected. Each site
included approximately a 20 meter section of a stream. Lichen thalli were examined in
two hydrological zones: the submerged zone (A; permanently submerged stream bottom,
aquatic habitat) and splash zone (B; permanently splashed and frequently flooded rocks
on lower bank of stream). The number of individuals of each species was estimated at
each sampling site. The entire surface of each site was thoroughly examined, including
all substrate types (boulders, rocks, small stones, rocky substrates, solid surfaces).

Identification of the species

Specimens collected were identified using standard lichenological techniques based on
the appropriate keys and taxonomic treatments (i.e. Smith et al. 2009, Thüs & Schultz
2009, Krzewicka 2012, Orange 2013, Wirth et al. 2013). Specimens are housed at the
herbarium of the W. Szafer Institute of Botany, Polish Academy of Sciences in Kraków
(KRAM) and are available on request from the curator.

Habitat parameters measured

The following parameters, routinely used as baseline indicators of water quality, were
measured and included in subsequent analyses: pH, electrical conductivity of water
[μS/cm] (HI 9811-5 meter, Hanna Instruments), dissolved oxygen content [%] (CO-105
oxygen meter, Elemtron) and silting [% of the rock surface]. In addition, light intensity
(photosynthetic active radiation; �mol m–2 s–1) was measured at each sampling site using
Kipp & Zonen PAR Quantum Sensor. Five measurements at different points at each site
were taken on three consecutive days and the mean value was considered as one observa-
tion. Measurements were made in the morning on a clear day (previous three days
rainless). The percentage of the surface covered with silt is the mean value of the mea-
surements taken in a straight line across each stream in an area of 1 m2 at sites on the left
and right hand bank and in the middle of the stream.

Evaluation of the abundance lichen thalli

The abundance of thalli at the sampling sites was estimated for three hygrophilous spe-
cies, i.e. Thelidium minutulum, Verrucaria hydrophila and V. praetermissa. These
lichens form relatively well visible and recognizable thalli and are commonly found in
Carpathian streams (Krzewicka et al. 2017, Matura 2020, see also Table 1). The percent-
age of the host substrate covered by the thallus of a species in an area of 25 cm2 was
assessed in the splash and submerged zones using a 5 × 5 cm frame. The frame was posi-
tioned on the surface of a stone so that most of the thallus was contained within it.

Table 1. – List of lichen species associated with mountain streams in the Beskid Sądecki Mts (Western
Carpathians) and their general characteristics. Functional groups: crust. sex. – crustose growth form and
mainly sexual reproductive strategy; per – perithecia; ap – apothecia; green algae – other than Trentepohlia,

mainly Trebouxia. Habitat: Sub – submerged zone (A), Spl – splash zone (B); I, II, III – habitat classes (Hab-I,
Hab-II, Hab-III), for more details see Fig. 2; � absent, � present. Zone preference: based on data obtained from
this study. Red list category: CR – critically endangered, EN – endangered, VU – vulnerable, NT – near threat-
ened, LC – least concern, DD – data deficient �
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Data processing and statistical analysis

Cluster analysis using a hierarchical clustering routine based on an unweighted pair-
group average (UPGMA) algorithm was used to group the sampling sites according to
their pH, water conductivity, dissolved oxygen content and silting. Non-metric multidi-
mensional scaling (NMDS) was used (Taguchi & Oono 2005) for the same purposes. As
an external factor not directly related to aquatic attributes, light intensity at the sampling
sites was not included in these analyses. Sampling sites were assigned to one of three gen-
eral habitat classes: Hab-I, Hab-II and Hab-III (Fig. 1) based on the comparison of the
results.

The Kruskal-Wallis test followed by Dunn’s post hoc test were used to test the differ-
ences in parameters across the streams. After Levene’s test, used to assess the equality of
variances, a one-way analysis of variance (ANOVA), together with Tukey’s test (the
unequal n HSD modification) for posterior comparisons, were performed in order to
reveal significant differences in parameters across habitat classes. Prior to this, the nor-
mality of the distribution of the variables was verified using the Kolmogorov-Smirnov
test. The variables were Box-Cox-transformed if necessary.

The seriation of species presence/absence at all sampling sites was done using a con-
strained algorithm (Brower & Kile 1988). The Mantel test (Mantel & Valand 1970) was
used for the correlation between geographical distance and lichen species composition
dissimilarity matrices. Coordinates of the sampling sites that were located in the middle
part of the streams and the presence/absence of species in individual streams were
considered.

The correlation matrix was computed in order to determine the relationship between
all habitat parameters. In addition, relationships between values of all parameters mea-
sured at sampling sites and the distance of these sites from the source of each stream were
evaluated by means of Pearson correlation coefficient (R). Since some significant differ-
ences in water conductivity and dissolved oxygen content were revealed between the
streams, the coefficients were calculated separately for streams with comparable values
of these parameters in accordance with the results of Dunn’s test.

Non-metric multidimensional scaling (NMDS) was used to determine the similarities
between examined sampling sites in terms of lichen composition. This was done both for
species occurrence in habitat classes and streams. The presence or absence of a species
was a priority and the scaling was based on the Jaccard coefficient. Detrended correspon-
dence analysis (DCA) was used to determine the association of individual lichens with
different habitat types, i.e. habitat classes (Hab-I, Hab-II and Hab-III) and hydrological
zones (A and B). This analysis was done using the mean frequency of species calculated for
particular habitat types. Canonical correspondence analysis (CCA; Legendre & Legendre
1998) was used to relate the abundance of individual lichens to habitat parameters mea-
sured at the sampling sites. A Monte Carlo permutation test based on 9999 random permu-
tations was done in order to assess the statistical significance of the relationships between
species and habitat factors as well as canonical axes (ter Braak & Šmilauer 2002).

Relationships between thallus abundance and habitat parameters at the sites where
lichens were growing were estimated using Pearson correlation coefficient. The analyses
were done for both hydrological zones (A and B). Statistical calculations were carried out
using CANOCO 5, Past 3.21 (Hammer et al. 2001) and STATISTICA 12.
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Results

Variability of the habitat

Although there were significant differences in the conductivity and dissolved oxygen
content of the water in the streams the parameters measured were similar (Electronic
Appendix 1). A dendrogram and NMDS diagram revealed three distinct groups, accord-
ingly the sampling sites were assigned to the hydrological habitat classes: Hab-I, Hab-II
and Hab-III (Fig. 1). Water pH did not differentiate significantly between them, however,
pH in Hab-III was slightly higher than in Hab-I and Hab-II. Water conductivity varied
significantly between the classes; the lowest was recorded in Hab-I and the highest in
Hab-III. Dissolved oxygen content was similar in Hab-I and Hab-II but different in Hab-
III, whereas degree of silting was similar in Hab-II and Hab-III but different in Hab-I
(Fig. 2). Light-exposure at the sampling sites varied and, although more shady localities
occurred more frequently in Hab-I (Fig. 2), insolation did not affect the classification.
The same class could be found to occur at different streams and between two and three
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Fig. 1. – Cluster analysis dendrogram (UPGMA) and non-metric multidimensional scaling scatterplot
(NMDS) of the sampling sites representing three different habitat classes (Hab-I, Hab-II, Hab-III) separated by
pH, conductivity, dissolved oxygen content and silting. The affiliation of sampling sites to a habitat class is pro-
vided alongside the dendrogram; sampling sites are listed in order of appearance on the dendrogram. See Mate-
rial and methods for stream abbreviations and Electronic Appendix 1 for stream locations.



habitat classes occurred along the same stream. Habitat conditions along some streams
were, however, homogenous and all the sampling sites along these streams belonged to
only one habitat class. For instance, only Hab-I was recorded in the PR stream whereas in
the BL and WO streams it was only Hab-III (Fig. 1).

There was a significant positive correlation between pH, water conductivity and light
intensity at the sampling sites and their distance from the source (Electronic Appendix 1).
This means that values of chemical parameters gradually increased downstream and
shading decreased. The pH value and conductivity of water were generally correlated
positively with each other (R = 0.39; P < 0.05) while dissolved oxygen content correlated
negatively with conductivity (R = –0.50; P < 0.05). Local siltation was not found to
correlate with other factors.
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Fig. 2. – Box-and-whisker plots of the parameters of
the habitat classes (Hab-I, n = 16; Hab-II, n = 14;
Hab-III, n = 13); points indicate mean values, whiskers
indicate standard deviations. Results of ANOVA
(F- and P-values) and the Kruskal-Wallis test (H- and
P-values) are provided. Letters denote the results of
Tukey’s test and Dunn’s test with different letters
indicating significant differences for P < 0.05.



Richness of lichens in terms of species

A total of 29 hygrophilous lichens were recorded (see also Fig. 3 and Electronic Appen-
dix 1); the number of species ranges from nine to 15 in individual streams. The richness
of the lichen biota did not differ greatly between habitat classes. However, the number of
species and individuals and the Shannon index were generally twice as large in the splash
zone (B) than in the submerged zone (A). This disparity between zones was the smallest
in Hab-I and greatest in Hab-III (Fig. 4). Twelve species were found to be able to exist
permanently under water and one lichen, Thelidium klementii, was recorded only in this
habitat.

Patterns of lichen species composition

NMDS diagrams illustrate general patterns of similarity between the sampling sites for
the composition of lichens across habitat classes and streams. A relatively continuous
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Fig. 3. – The seriation diagram of the species absence-presence at the sampling sites of particular streams; habi-
tat classes are given in parentheses. The streams are arranged from east to west. See Table 1 for species abbrevi-
ations, Material and methods for stream abbreviations.



distribution of sites is depicted in Electronic Appendix 1 and groups relating to specific
habitat classes are not differentiated. Points on the diagrams are unorganized and the
classes overlap. The greatest dispersion is recorded for Hab-II sites while most of the
sites within Hab-I and Hab-III classes are contained in Hab-II.

Differences in the lichen biota are more apparent for individual streams as shown in
Electronic Appendix 1. Non-adjacent streams such as WO and BL or SZ and KO are also
clearly separated in the diagram while points representing sampling sites that are close to
one another such as WO, SZ, UH or PR, KO, BL are also close together on the diagram.
The species composition at the sampling sites along WI differed from that for other
streams and these sites are completely separate.

According to the Mantel test, the correlation coefficient between all the entries in the
geographical distance matrix and lichen species composition dissimilarity matrix was
positive and significant; R = 0.52, P < 0.05. Dissimilarity in the species composition of
lichens in streams increased as the geographical distance between them increased (Fig. 5);
the species composition of adjacent streams were the most similar.

Habitat preferences of lichens

The DCA determined the general direction and range in the variability of lichen vegeta-
tion in the habitat classes and hydrological zones (Fig. 6). The eigenvalues of axes 1 and 2
were 0.26 and 0.05, respectively. Only four lichens (Hydropunctaria rheitrophila,
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Fig. 4. – Richness of the lichen biota in habitat
classes (Hab-I, Hab-II, Hab-III) expressed as the
number of lichen species, the number of lichen indi-
viduals and the Shannon diversity index. Points indi-
cate the median, whiskers indicate minimum and
maximum; data are presented separately for the sub-
merged (A) and splash (B) zones.
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Fig. 5. – The result of the Mantel test; the correlation between species composition dissimilarity and geograph-
ical distance matrices for the streams.

Fig. 6. – Detrended correspondence analysis (DCA) ordination diagram of habitat classes (in relation to hydro-
logical zones; Hab-I/A, Hab-II/A, Hab-III/A and Hab-I/B, Hab-II/B, Hab-III/B) and associated species of
lichens. The zone (A and/or B) in which a species of lichen was recorded is given in parentheses. See Table 1
for species abbreviations.



Thelidium klementii, Verrucaria aquatilis, V. hydrophila) were strongly associated with
the submerged zone (Hab-I/A, Hab-II/A, Hab-III/A). Most of the other species are scat-
tered on the left side of the graph and occurred mostly (or only) in the splash zone (Hab-
I/B, Hab-II/B, Hab-III/B). It is difficult to determine accurately the affinity of some
lichens to a certain habitat class; however, the species in the upper part of the graph are
more associated with Hab-I whereas those on the lower part with Hab-II and Hab-III.

The relationship between the abundance of lichen species and habitat parameters was
verified by CCA (Electronic Appendix 1). The Monte Carlo permutation test revealed
that both the first axis and all canonical axes together were statistically significant (P =
0.042 and P = 0.040, respectively). The eigenvalue of axes 1 and 2 were 0.18 and 0.14,
respectively.

Responses of lichens to habitat factors

Potential effects of the habitat parameters on the abundance of thalli of three common
lichens (Verrucaria hydrophila, V. praetermissa, Thelidium minutulum) at particular
sampling sites were examined. Significant relationships (P < 0.05) were found only for
water conductivity (Fig. 7). Pearson correlation coefficients revealed that V. hydrophila
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Fig. 7. – Scatterplots showing the relationship between the abundance of lichen thalli at the sampling site (aver-
age percentage coverage of 25 cm2 stone surface by thallus) and conductivity of water measured at this site;
Pearson coefficients (R) and P values are provided.



and V. praetermissa responded markedly to water conductivity although in different
ways. Responses were detected in both zones and have the same direction. Thalli of
V. hydrophila decreased in size as conductivity increased; R = –0.56 and R = –0.49 for
zones A and B, respectively. Thalli of V. praetermissa increased in size with increase in
conductivity; R = 0.72 and R = 0.54 for zones A and B, respectively, with the positive cor-
relation being particularly evident in the submerged zone (A). The size of T. minutulum

thalli was not dependent on the conductivity of water in either zone (R = –0.30, P = 0.37;
for zone A and R = –0.25, P = 0.29; for zone B).

Discussion

Habitat conditions in streams at a local-scale

Structural diversity of the habitat, often referred to as habitat heterogeneity or complex-
ity, reflects the range of available resources used by species with different niche require-
ments and, therefore, determines species diversity in a certain environment (Gorman &
Karr 1978, Lepori et al. 2005, Laub et al. 2012). Various environmental factors differ-
ently affect different groups of organisms. In freshwater habitats, lichens are influenced
by several factors related to the duration of submergence, light availability, lithology and
stability of substratum, and water chemistry. The substrate is particularly important for
lichens and their occurrence in streams depends on the type of bedrock and size of the
rocks (Keller 2005, Krzewicka & Galas 2006, Nascimbene & Nimis 2006, Nascimbene
et al. 2009). Some aquatic lichens, although inherently saxicolous, are able to inhabit sub-
merged roots in places with little rocky substrate (Motiejűnaitë 2003, Hachułka 2011).
The increase in geomorphological diversity of the structure of stream beds by the pres-
ence of large boulders, rocky thresholds, gravel, rocky banks or logs, backwaters (aban-
doned channels and chutes) will increase the diversity of the space that could be colo-
nized by lichens (Thüs & Schultz 2009). The morphology of the streams studied was sim-
ilar as it was shaped mainly by Carpathian flysch (Birkenmajer & Oszczypko 1989).
A wide spectrum of more or less stable rocky forms, such as boulders, rocks, small
stones, thresholds and concrete culverts, occur along their entire length providing poten-
tially suitable substrates for various species of lichens.

We identified three distinct habitat classes based on fundamental and routinely mea-
sured parameters that are easy to determine in the field, which may affect the occurrence
of freshwater lichens (Fig. 1). In Hab-I there is a low concentration of ions in the water
and little silt on the bedrock. On the other hand, Hab-III is characterized by approximately
twice the concentration of ions, lower dissolved oxygen content, a relatively higher pH
value and usually more pronounced silting (Fig. 2). The first class (Hab-I) is associated
with the upper part of the streams of BA, CZ, PR, SZ and UH while all the sampling sites
along BL, KO, ML, WI and WO, from their source to the lower stretches were classified
in Hab-III or Hab-II/Hab-III classes (Fig. 1). WO and BL have an electrolytic conductiv-
ity inherently higher than other flysch streams in very good ecological state and of uni-
form chemical composition (e.g. Policht-Latawiec et al. 2014). Nevertheless, we assume
that the habitat parameters measured are representative of natural state undisturbed
streams in the area studied. A gradual increase in pH and water conductivity downstream
and the high dissolved oxygen content recorded at the sampling sites, usually oscillating

248 Preslia 92: 235–254, 2020



around 90% (Electronic Appendix 1), clearly indicate that the changes in parameters
result from natural processes, e.g. soluble nature of water, geology, rain and evaporation
(Wysocka-Czubaszek & Wojno 2014). Light intensity differs between sampling sites and
insolation is not directly related to the habitat class (Fig. 2). However, some of the sam-
pling sites close to the source of the streams were often more shaded than those in the
lower parts of the streams (Electronic Appendix 1). This most probably results from the
local topography, with the channel recessed more into the slope and a denser tree canopy.

Habitat preferences and distribution of freshwater lichens

The lack or scarcity of data on the occurrence of aquatic species in many parts of the
world, especially Africa and South America, is presumably due to insufficient recogni-
tion of the freshwater lichen biota than to the actual absence or rarity of certain lichens.
Therefore, it is difficult to compare various geographical regions in terms of species
diversity at either continental or regional scales. Nevertheless, the range in species rich-
ness recorded by us in the streams in the Beskid Sądecki Mts (from nine to 15) is similar
to that reported from other mountain regions in Europe, such as the Alps (Nascimbene et
al. 2007) or Eastern Carpathians (Krzewicka et al. 2017); thus, the biodiversity of fresh-
water lichens can be considered high in this area. Although three habitat classes were dis-
tinguished, they are all in the first class of water purity (Kancelaria Sejmu RP 2011). High
diversities of lichens are recorded in watercourses characterized by pure water whereas
the diversity is low in those subject to eutrophication (Nascimbene et al. 2013, Krzewicka
et al. 2017). Nascimbene et al. (2007) reported that the sensitivity of freshwater lichens to
water parameters, such as pH, conductivity, temperature and dissolved oxygen content
differ. However, a natural ionic enrichment of water and slight change in other parame-
ters downstream (Electronic Appendix 1) does not have a strong effect on the species
richness and composition of lichens (Figs 4 and 5).

There is a vertical zonation in the distribution of freshwater lichens (Ried 1960,
Gilbert 1996, Krzewicka et al. 2017). Most species have a low tolerance of complete and
continuous immersion in water and often or only occur in the splash zone. Lichen thalli
derive their mechanical stability from conglutinate pseudoparenchyma which is hydro-
philic and passively absorbs water and dissolved nutrients. Plectenchyma consists of gas
filled zones built up by aerial hyphae with hydrophobic surfaces (Honegger 2006). Some
of these lichens are able to survive under water and were also recorded in the submerged
zone (Table 1, Fig. 6). Independent of the habitat class, the number of species and their
abundance were approximately twice as high in the splash zone than the submerged zone
(Fig. 4). The lichen Thelidium klementii is unique in this respect and was found only
underwater in the two non-neighbouring BA and BL streams. Outside Poland, T.

klementii is a very rare species known only from the type locality in Germany (Thüs &
Nascimbene 2008). However, this lichen may be overlooked, which makes it difficult to
ascertain the limits of its distribution.

Only three species, Verrucaria hydrophila, V. praetermissa and Thelidium minutulum,
occurred in all streams and habitat classes (Fig. 3). These lichens are frequently reported in
the Eastern and Western Carpathians (Krzewicka & Galas 2006, Krzewicka 2009, 2012,
Krzewicka et al. 2017) and can be considered as widespread and consistent inhabitants of
clean mountain streams in this region. Other species only appear in some streams and
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habitat classes. It is difficult to specify any particular preferences of these species for hab-
itat factors (Electronic Appendix 1). They tend to grow in parts of streams where the
water has a low ionic content. Strong exposure to light, especially where the water is
calmer, can promote the development of autonomous algae, including filamentous algae
and due to their size they can occupy a large area of stabile substrate. On the other hand,
silting makes it difficult for lichens to overgrow the substrate and reduces light penetration.
Interestingly, some lichens exhibit atypical preferences. For example, the relatively fre-
quent Thelidium zahlbrucknerii seems to prefer sites with increased water conductivity
(Electronic Appendix 1) and as a rule it was found in Hab-II and Hab-III classes (Fig. 3).

High distinctiveness of streams in terms of species composition of lichens

Lichen assemblages noted at the sampling sites along the streams were not differentiated
by changes in habitat parameters and the level of change was too low to affect the lichen
biota along some of the streams. However, the composition of lichens in individual
streams was often unique regardless of water quality. This was earlier reported for acid
watercourses in England in which there were a more or less constant number of species of
lichen per stream but the species composition in individual watercourses differed (Gilbert
& Giavarini 1997). Some differences in the species composition can be easily explained
by the type of substrate and the preference of a particular lichen for either calcareous or
siliceous rocks (Gilbert 1996, Gilbert & Giavarini 1997). However, distinct communities
also appear in streams with similar geomorphology (Birkenmajer & Oszczypko 1989,
Radecki-Pawlik 2006). This also applies to streams with first class water purity
(Nascimbene et al. 2007, Krzewicka et al. 2017). For example, Hab-III occurs along the
entire length of WO and BL streams and the water conductivity and silting recorded in
them is higher than in most clean flysch watercourses. We expected these streams to be
inhabited by similar sets of lichens and to be different from other streams; however, the
greatest differences of species composition were recorded for these streams (Figs 3 and 5).
They are located at the greatest distance from each other and we observed that the species
composition was similar in adjacent streams (Fig. 3). Variations in the biota of freshwater
lichens appears to depend on the distance between streams and their isolation (Fig. 5).

We assume that the weak dispersal ability of the freshwater lichens recorded in this
study is a more limiting factor than the habitat parameters. For example, Hydropunctaria

rheitrophila was present in all habitat classes and hydrological zones (Table 1), does not
have a clear preference for any factor (Electronic Appendix 1) and was recorded only in
three neighbouring streams (Fig. 3). All the lichens recorded are capable of sexual repro-
duction, mainly creating perithecia, while apothecia occur sporadically as they are less
adapted to water (Table 1, Thüs et al. 2014). However, unlike other typical terrestrial
lichens, the spread and migration of spores and vegetative propagules of freshwater
lichens between streambeds are very difficult. Effective dispersal via natural vectors,
such as wind and animals, is very limited. The water flow constitutes the main and perma-
nent means of dispersal but acts only one way within a stream. This may be the reason for
the conservative species composition in mountain streams. This is supported by the fact
that all the sampling sites along WI stream are at the greatest distance from the others on
the NMDS ordination diagram (Electronic Appendix 1). Although all habitat classes
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occur along the WI stream, only a small number of lichens have colonized the bed of this
stream (Fig. 3).

Effect of water parameters on the abundance of lichen thalli

Various environmental factors differently affect the growth rate of lichen thalli. For
example, Thüs (2002) notes that silting can severely limit lichen growth, both because it
reduces light intensity and covers the thalli. Most freshwater lichens are very sensitive to
the deposition of silt-like sediments on their surface and only a few species tolerate mod-
erate silting, such as Bacidina inundata and Verrucaria praetermissa (Thüs 2002,
Nascimbene et al. 2013). We attempted to estimate the effect of the factors studied by us
on the thallus abundance/size of three common freshwater lichens. We found a clear and,
interestingly, opposite responses in two species in relation to ionic water enrichment
(Fig. 7). The size of V. praetermissa thalli was correlated with water conductivity and the
cover of this lichen on the substrate increased with increase in water conductivity. Good
survival of this species under harsh conditions is reported by Thüs (2002). The reverse
trend (decreased size of thalli) was recorded for V. hydrophila. It should be pointed out
that these relationships are for the size of the thallus, not the number of species individu-
als at a sampling site.

Conclusion

Based on data collected from 10 flysch mountain streams in the Beskid Sądecki Mts
(Western Carpathians), we draw the following conclusions: (i) The presence of species of
freshwater lichens in mountain streams is more strongly site-dependent than habitat fac-
tor-dependent. (ii) Altogether 29 species were recorded, only three of which (Thelidium

minutulum, Verrucaria hydrophila and V. praetermissa) can be considered as a perma-
nent lichen component of mountain streams in the area studied. The other species have
weak dispersal abilities and their occurrence is limited to certain streams or even one
stream. (iii) The streams are highly specific in terms of species composition of lichens.
Differences in lichen composition increase with increase in the geographical distance
between streams. (iv) Differences in the species composition in a stream do not result
directly from a gradual change in the habitat parameters. (v) Only four species (Hydro-

punctaria rheitrophila, Thelidium klementii, Verrucaria aquatilis and V. hydrophila)
tend to be totally submerged and most freshwater lichens prefer the splash zone. (vi)
Increased ion content in the water can considerably promote the development of lichen
thalli, as in the case of Verrucaria praetermissa, but can limit its development of others,
as is the case for V. hydrophila. (vii) Most of the lichens clearly preferred to inhabit the
splash zone, thus the species richness there is considerable higher than at submerged
localities. On the other hand, none of the species occupied a narrow ecological niche in
terms of water quality; however, the results suggest that the presence of Thelidium

aquaticum may indicate high purity of water in a stream.

See www.preslia.cz for Electronic Appendix 1
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Souhrn

O rozšíření sladkovodních lišejníků a faktorech, které je podmiňují, se ví poměrně málo. V článku přinášíme
výsledky studia druhové bohatosti a složení lišejníkových společenstev v karpatských horských potocích.
Parametry stanoviště (pH, konduktivita, obsah rozpuštěného kyslíku, naplavené částice a světelná intenzita)
byly měřeny na studovaných lokalitách a použity jako vysvětlující proměnné v analýzách. Druhové složení jed-
notlivých potoků se velmi lišilo – pouze tři druhy (Thelidium minutulum, Verrucaria hydrophila and V. prae-

termissa) z celkového počtu 29 zjištěných se vyskytovaly všude. Tato heterogenita však nebyla podmíněna -
variabilitou studovaných stanovištních parametrů; rozdíly v druhovém složení vzrůstaly s tím, jak byly jednotlivé
potoky od sebe vzdáleny, a tento efekt se projevoval i v lokálním měřítku. Naše výsledky tedy ukazují, že
výskyt lišejníků v horských potocích silně závisí na konkrétní lokalitě a méně na stanovištních parametrech
dotyčného toku. Absence přirozených vektorů a slabá schopnost rozšiřování jsou faktory silně limitující šíření
sladkovodních lišejníků. Zvýšená koncentrace iontů ve vodě může nicméně významně podpořit rozvoj stélek
některých druhů, například Verrucaria praetermissa, a naopak působit jako omezující faktor u jiných, jako tře-
ba V. hydrophila.
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